Respuesta:
No me da el tiempo para hacer los demas :)
Gracias por los puntos <3
Explicación paso a paso:
8.
[tex]\int\limits {(4-x^{3}-5x^{5} ) } \, dx \\\int\limits4 \, dx -\int\limits x^{3} \, dx -\int\limits5x^{5} \, dx \\4\int\limits \, dx -\int\limits{x^{3} } \, dx -5\int\limits {x^{5} } \, dx \\4x-\frac{x^{3+1} }{3+1} -5(\frac{x^{5+1} }{5+1} )+C\\4x-\frac{x^{4} }{4}-\frac{5x^{6} }{6} +C[/tex]
9.
[tex]\int\limits {(csc^{2}x +sec^{2}x )} \, dx \\\int\limits {(csc^{2}x )} \, dx +\int\limits {(sec^{2}x } )\, dx \\-ctgx+tgx+C\\-2 ctg2x+C[/tex]
10.
[tex]\int\limits {(2x+3)^{3} } \, dx \\u=2x+3\\\frac{du}{dx}=1(2)x^{1-1} \\\frac{du}{dx} =2x^{0} \\\frac{du}{dx}=2\\\frac{du}{2} =dx\\\int\limits {u^{3} } \, (\frac{du}{2})\\ \frac{1}{2}\int\limits {u^{3} } \, du\\ \frac{1}{2}(\frac{u^{3+1} }{3+1} )+C\\ \frac{u^{4} }{2(4)}+C\\ \frac{u^{4} }{8} +C\\ \frac{(2x+3)^{4} }{8} +C[/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Respuesta:
No me da el tiempo para hacer los demas :)
Gracias por los puntos <3
Explicación paso a paso:
8.
[tex]\int\limits {(4-x^{3}-5x^{5} ) } \, dx \\\int\limits4 \, dx -\int\limits x^{3} \, dx -\int\limits5x^{5} \, dx \\4\int\limits \, dx -\int\limits{x^{3} } \, dx -5\int\limits {x^{5} } \, dx \\4x-\frac{x^{3+1} }{3+1} -5(\frac{x^{5+1} }{5+1} )+C\\4x-\frac{x^{4} }{4}-\frac{5x^{6} }{6} +C[/tex]
9.
[tex]\int\limits {(csc^{2}x +sec^{2}x )} \, dx \\\int\limits {(csc^{2}x )} \, dx +\int\limits {(sec^{2}x } )\, dx \\-ctgx+tgx+C\\-2 ctg2x+C[/tex]
10.
[tex]\int\limits {(2x+3)^{3} } \, dx \\u=2x+3\\\frac{du}{dx}=1(2)x^{1-1} \\\frac{du}{dx} =2x^{0} \\\frac{du}{dx}=2\\\frac{du}{2} =dx\\\int\limits {u^{3} } \, (\frac{du}{2})\\ \frac{1}{2}\int\limits {u^{3} } \, du\\ \frac{1}{2}(\frac{u^{3+1} }{3+1} )+C\\ \frac{u^{4} }{2(4)}+C\\ \frac{u^{4} }{8} +C\\ \frac{(2x+3)^{4} }{8} +C[/tex]