Bantu yg C tentukan integral parsial lebih jelasnya x (pangkat 3) / akar 1-x (pangkat 2)
acim
Int x³/(√(1 - x²) dx = int x² x dx/(√(1 - x²)
misal u = 1 - x² -----> x² = (1 - u) du = - 2x dx -1/2 du = x dx maka integral di atas dapat disajikan sebagai : = int -1/2 (1 - u)/√u du = -1/2 int (1/√u - √u) du = -1/2 int (u^(-1/2) - u^1/2) du = -1/2 (2u^(1/2) - 2/3 u^(3/2)) + C = -u^(1/2) + 1/3 u^(3/2) + C = -√u + 1/3 u√u + C = - √(1 - x²) + 1/3 (1- x²)√(1 - x²) + C
misal u = 1 - x² -----> x² = (1 - u)
du = - 2x dx
-1/2 du = x dx
maka integral di atas dapat disajikan sebagai :
= int -1/2 (1 - u)/√u du
= -1/2 int (1/√u - √u) du
= -1/2 int (u^(-1/2) - u^1/2) du
= -1/2 (2u^(1/2) - 2/3 u^(3/2)) + C
= -u^(1/2) + 1/3 u^(3/2) + C
= -√u + 1/3 u√u + C
= - √(1 - x²) + 1/3 (1- x²)√(1 - x²) + C