Acontinuación, resuelve las siguientes situaciones problemáticas 1. Sea la función: y = x2 - 6x + 5. Analízalay graficalo. 2. De la función mostrada f(x)=x2 + 4x-5, hacer la gráfica y determinar el rango 3. De la función mostrada, y=-x? +6x +16, estúdialay dibuja 4. De la función mostrada, y = - 2x2 - x + 6, estúdialay dibuja
Y=-x2-6x-5 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework. If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Explicación paso a paso:
Using Derivatives In Curve Sketching 1) Find Any Relative Maximum, Relative Minimum, Or Infliction Points And Sketch The Following Function: Y = X + 6x - 16. 2) Find Any Relative Maximum, Relative Minimum, Or Infliction Points And Sketch The Following Function: Y = X3 – 9x - 4.
Respuesta:
Y=-x2-6x-5 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework. If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Explicación paso a paso:
Using Derivatives In Curve Sketching 1) Find Any Relative Maximum, Relative Minimum, Or Infliction Points And Sketch The Following Function: Y = X + 6x - 16. 2) Find Any Relative Maximum, Relative Minimum, Or Infliction Points And Sketch The Following Function: Y = X3 – 9x - 4.