Jawab:
4 ⅙
Penjelasan dengan langkah-langkah:
Soal ini melibatkan trinomial Newton apabila a + b + c dikuadratkan
[tex]\begin{aligned}(a+b+c)^2&\:=(a+b+c)(a+b+c)\\\:&=a^2+ab+ac+ab+b^2+bc+ac+bc+c^2\\\:&=a^2+b^2+c^2+2(ab+ac+bc)\end{aligned}[/tex]
Jadi
[tex]\begin{aligned}(a+b+c)^2&\:=a^2+b^2+c^2+2(ab+ac+bc)\\1^2\:&=2+2(ab+ac+bc)\\ab+ac+bc\:&=-\frac{1}{2}\end{aligned}[/tex]
Cari rumus a³ + b³ + c³ - 3abc dengan melibatkan data-data dari hasil yang diperoleh
[tex]\begin{aligned}a^3+b^3+c^3-3abc&\:=(a+b)^3-3ab(a+b)+c^2-3abc\\\:&=p^3-3abp+c^2-3abc\\\:&=(p+c)(p^2-cp+c^2)-3ab(p+c)\\\:&=(p+c)[(p^2-cp+c^2)-3ab]\\\:&=(a+b+c)[(a+b)^2-(a+b)c+c^2-3ab]\\\:&=(a+b+c)(a^2+2ab+b^2-ac-bc+c^2-3ab)\\\:&=(a+b+c)[a^2+b^2+c^2-(ab+ac+bc)]\end{aligned}[/tex]
maka
[tex]\begin{aligned}a^3+b^3+c^3&\:=(a+b+c)[a^2+b^2+c^2-(ab+ac+bc)]+3abc\\3\:&=1\left [ 2-\left ( -\frac{1}{2} \right ) \right ]+3abc\\3\:&=\frac{5}{2}+3abc\\abc\:&=\frac{1}{6}\end{aligned}[/tex]
Berdasarkan (x + y + z)² = x² + y² + z² + 2(xy + xz + yz) diperoleh
[tex]\begin{aligned}(ab+ac+bc)^2&\:=(ab)^2+(ac)^2+(bc)^2+2[ab(ac)+ab(bc)+ac(bc)]\\(ab+ac+bc)^2\:&=a^2b^2+a^2c^2+b^2c^2+2(a^2bc+ab^2c+abc^2)\\(ab+ac+bc)^2\:&=a^2b^2+a^2c^2+b^2c^2+2abc(a+b+c)\\\left ( -\frac{1}{2} \right )^2\:&=a^2b^2+a^2c^2+b^2c^2+\frac{1}{3}(1)\\a^2b^2+a^2c^2+b^2c^2\:&=-\frac{1}{12}\end{aligned}[/tex]
Tentukan a⁴ + b⁴ + c⁴
[tex]\begin{aligned}a^4+b^4+c^4&\:=(a^2)^2+(b^2)^2+(c^2)^2\\\:&=(a^2+b^2+c^2)^2-2(a^2b^2+a^2c^2+b^2c^2)\\\:&=2^2-2\left ( -\frac{1}{12} \right )\\\:&=4\tfrac{1}{6}\end{aligned}[/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Jawab:
4 ⅙
Penjelasan dengan langkah-langkah:
Soal ini melibatkan trinomial Newton apabila a + b + c dikuadratkan
[tex]\begin{aligned}(a+b+c)^2&\:=(a+b+c)(a+b+c)\\\:&=a^2+ab+ac+ab+b^2+bc+ac+bc+c^2\\\:&=a^2+b^2+c^2+2(ab+ac+bc)\end{aligned}[/tex]
Jadi
[tex]\begin{aligned}(a+b+c)^2&\:=a^2+b^2+c^2+2(ab+ac+bc)\\1^2\:&=2+2(ab+ac+bc)\\ab+ac+bc\:&=-\frac{1}{2}\end{aligned}[/tex]
Cari rumus a³ + b³ + c³ - 3abc dengan melibatkan data-data dari hasil yang diperoleh
[tex]\begin{aligned}a^3+b^3+c^3-3abc&\:=(a+b)^3-3ab(a+b)+c^2-3abc\\\:&=p^3-3abp+c^2-3abc\\\:&=(p+c)(p^2-cp+c^2)-3ab(p+c)\\\:&=(p+c)[(p^2-cp+c^2)-3ab]\\\:&=(a+b+c)[(a+b)^2-(a+b)c+c^2-3ab]\\\:&=(a+b+c)(a^2+2ab+b^2-ac-bc+c^2-3ab)\\\:&=(a+b+c)[a^2+b^2+c^2-(ab+ac+bc)]\end{aligned}[/tex]
maka
[tex]\begin{aligned}a^3+b^3+c^3&\:=(a+b+c)[a^2+b^2+c^2-(ab+ac+bc)]+3abc\\3\:&=1\left [ 2-\left ( -\frac{1}{2} \right ) \right ]+3abc\\3\:&=\frac{5}{2}+3abc\\abc\:&=\frac{1}{6}\end{aligned}[/tex]
Berdasarkan (x + y + z)² = x² + y² + z² + 2(xy + xz + yz) diperoleh
[tex]\begin{aligned}(ab+ac+bc)^2&\:=(ab)^2+(ac)^2+(bc)^2+2[ab(ac)+ab(bc)+ac(bc)]\\(ab+ac+bc)^2\:&=a^2b^2+a^2c^2+b^2c^2+2(a^2bc+ab^2c+abc^2)\\(ab+ac+bc)^2\:&=a^2b^2+a^2c^2+b^2c^2+2abc(a+b+c)\\\left ( -\frac{1}{2} \right )^2\:&=a^2b^2+a^2c^2+b^2c^2+\frac{1}{3}(1)\\a^2b^2+a^2c^2+b^2c^2\:&=-\frac{1}{12}\end{aligned}[/tex]
Tentukan a⁴ + b⁴ + c⁴
[tex]\begin{aligned}a^4+b^4+c^4&\:=(a^2)^2+(b^2)^2+(c^2)^2\\\:&=(a^2+b^2+c^2)^2-2(a^2b^2+a^2c^2+b^2c^2)\\\:&=2^2-2\left ( -\frac{1}{12} \right )\\\:&=4\tfrac{1}{6}\end{aligned}[/tex]