[tex]\mathrm{Encontrar\:el\:maximo\:comun\:divisor\:de\:}m^4-n^4[/tex]
[tex]\bold{m^4-n^4}[/tex]
[tex]\bold{=\left(m^2\right)^2-\left(n^2\right)^2}[/tex]
[tex]\bold{=\left(m^2+n^2\right)\left(m^2-n^2\right)}[/tex]
[tex]\bold{=\left(m^2+n^2\right)\left(m+n\right)\left(m-n\right)}[/tex]
[tex]\mathrm {Factor \: comun:}[/tex]
[tex]\boxed{\bold{\left(m+n\right)\cdot \left(m-n\right)\cdot \left(m^2+n^2\right)}}[/tex]
↑↑↑↑
MCD
[tex]\mathrm{Encontrar\:el\:minimo\:comun\:multiplo\:de\:}m^4-n^4[/tex]
[tex]\mathrm{Multiplica \: cada \: factor \: con \: la \: mayor \: potencia:}[/tex]
MCM
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Verified answer
[tex]\mathrm{Encontrar\:el\:maximo\:comun\:divisor\:de\:}m^4-n^4[/tex]
[tex]\bold{m^4-n^4}[/tex]
[tex]\bold{=\left(m^2\right)^2-\left(n^2\right)^2}[/tex]
[tex]\bold{=\left(m^2+n^2\right)\left(m^2-n^2\right)}[/tex]
[tex]\bold{=\left(m^2+n^2\right)\left(m+n\right)\left(m-n\right)}[/tex]
[tex]\mathrm {Factor \: comun:}[/tex]
[tex]\boxed{\bold{\left(m+n\right)\cdot \left(m-n\right)\cdot \left(m^2+n^2\right)}}[/tex]
↑↑↑↑
MCD
[tex]\mathrm{Encontrar\:el\:minimo\:comun\:multiplo\:de\:}m^4-n^4[/tex]
[tex]\bold{m^4-n^4}[/tex]
[tex]\bold{=\left(m^2\right)^2-\left(n^2\right)^2}[/tex]
[tex]\bold{=\left(m^2+n^2\right)\left(m+n\right)\left(m-n\right)}[/tex]
[tex]\mathrm{Multiplica \: cada \: factor \: con \: la \: mayor \: potencia:}[/tex]
[tex]\boxed{\bold{\left(m+n\right)\cdot \left(m-n\right)\cdot \left(m^2+n^2\right)}}[/tex]
↑↑↑↑
MCM