August 2018 1 31 Report
Se mide la cantidad de agua que sale de una manguera y se encuentra que una cubeta de 20 Litros se llena en 20 segundos:

a) Calcula el volumen de la cubeta en metros cúbicos (1 m3 = 1000 L). Primero desarrolla detalladamente la conversión.


b) Calcula cuántos metros cúbicos salen por la manguera cada segundo. Desarrolla y escribe las operaciones que estás realizando para llegar al cálculo.


El cálculo anterior es el gasto (G=v*A) que fluye por la manguera.

Considera que la manguera tiene un radio interior de 9mm (9x10-3m).

c) Calcula el área de una sección transversal de la manguera.


A=π*r2 =

d) Utilizando la expresión del gasto, calcula la velocidad con que el agua sale de la manguera.


De G=v*A; tenemos que:

e) Ahora, le pones un dedo en la salida del agua y dejas cubierta la mitad de dicha salida ¿qué área tendrá ahora la salida? Desarrolla la expresión y el resultado.


f) Calcula la nueva velocidad de salida del agua (comprenderás por qué es tan divertido poner el dedo en la salida de las mangueras)


v=G/A =

Finalmente, escribe una reflexión en la que respondas lo siguiente: ¿Cuál principio o principios utilizaste para responder la actividad (Arquímedes, Pascal, Bernoulli y Torricelli)? Explica de manera general el procedimiento que llevaste a cabo para responderla.
More Questions From This User See All

A un tinaco de 2.35 m de alto se le hace un pequeño agujero debido al tiempo y la corrosión,este agujero se encuentra justo en la base del tinaco. Deduce la fórmula para calcular la velocidad con que saldrá el chorro de agua por el agujero y calcula. Desarrollo: Partiendo de la ecuación de Bernoulli, toma en cuenta las consideraciones indicadas, realiza las sustituciones en la ecuación y escribe la expresión que resulta: La velocidad en el punto más alto es insignificante comparada con la velocidad del chorro, es decir: pvThis is the rendered form of the equation. You can not edit this directly. Right click will give you the option to save the image, and in most browsers you can drag the image onto your desktop or another program. / 2 = 0, entonces la expresión queda: La presión en ambos puntos es aproximadamente la misma, es decir: P1=P2 o P1-P2 = 0, entonces la expresión resultante es: De la expresión anterior considera que la altura en el punto más bajo es cero por lo que ρgh2 = 0, entonces la expresión simplificada queda como: Despejando la velocidad de esta última expresión, la velocidad la podemos calcular con la fórmula: a) v2=(2gh1)2 b) v2=This is the rendered form of the equation. You can not edit this directly. Right click will give you the option to save the image, and in most browsers you can drag the image onto your desktop or another program. c) v2=2gh1 Sustituye el valor de la altura del tinaco y calcula la velocidad con la que el agua sale por el agujero: v=
Answer

Life Enjoy

" Life is not a problem to be solved but a reality to be experienced! "

Get in touch

Social

© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.