Ghinashoda
L i m x - √(2x + 3) = l i m x - √(2x + 3) . x + √(2x + 3) x⇒3 9 - x² x⇒3 (9 - x²) (x + √(2x + 3) l i m x² - (2x + 3) x⇒3 (9 - x²)(x+√(2x+3) l i m x² - 2x - 3 x⇒3 (9 - x²)(x+√(2x+3) l i m (x - 3)(x + 1) x⇒3(x-3)(x+3)(x+√(2x+3) l i m x + 1 x⇒3 (x+3)(x+√(2x+3) = 3 + 1 (3+3)(3 + √(6+3) = 4 6(3 + 3) =4/36 = 1/9
x⇒3 9 - x² x⇒3 (9 - x²) (x + √(2x + 3)
l i m x² - (2x + 3)
x⇒3 (9 - x²)(x+√(2x+3)
l i m x² - 2x - 3
x⇒3 (9 - x²)(x+√(2x+3)
l i m (x - 3)(x + 1)
x⇒3(x-3)(x+3)(x+√(2x+3)
l i m x + 1
x⇒3 (x+3)(x+√(2x+3)
= 3 + 1
(3+3)(3 + √(6+3)
= 4
6(3 + 3)
=4/36
= 1/9