Proste są prostopadłe, jeżeli ich współczynniki kierunkowe spełniają zależność a₁ · a₂ = -1
Postać kierunkowa prostej to y=ax+b
gdzie:
a - współczynnik kierunkowy prostej
b - wyraz wolny
[tex]a)\\\\y=-2x+4\\\\a_{1}=-2\\\\a_{1}\cdot a_{2}=-1\\\\-2a_{2}=-1\ \ |:(-2)\\\\a_{2}=\frac{1}{2}\\\\y=\frac{1}{2}x+b\\\\Prosta\ \ ta\ \ przechodzi\ \ przez\ \ punkt\ \ P(6,-2)\ \ zatem,\\\\-2=\frac{1}{\not2_{1}}\cdot\not6^3+b\\\\-2=3+b\\\\-2-3=b\\\\b=-5\\\\\underline{y=\frac{1}{2}x-5}[/tex]
[tex]b)\\\\y=3x-1\\\\a_{1}=3\\\\a_{1}\cdot a_{2}=-1\\\\3a_{2}=-1\ \ |:3\\\\a_{2}=-\frac{1}{3}\\\\y=-\frac{1}{3}x+b\\\\-2=-\frac{1}{\not3_{1}}\cdot\not6^2+b\\\\-2=-2+b\\\\-2+2=b\\\\b=0\\\\y=-\frac{1}{3}x+0\\\\\underline{y=-\frac{1}{3}x}\\\\\\c)\\\\y=-x+6\\\\a_{1}=-1\\\\a_{1}\cdot a_{2}=-1\\\\-a_{2}=-1\ \ |\cdot(-1)\\\\a_{2}=1\\\\y=x+b\\\\-2=6+b\\\\-2-6=b\\\\b=-8[/tex]
[tex]\underline{y=x-8}[/tex]
[tex]d)\\\\y=1,5x-2,5\\\\a_{1}=1,5\\\\a_{1}\cdot a_{2}=-1\\\\1,5a_{2}=-1\ \ |:1,5\\\\a_{2}=-1:\frac{15}{10}\\\\a_{2} =-1:\frac{3}{2}\\\\a_{2}=-1\cdot\frac{2}{3}\\\\a_{2}=-\frac{2}{3}\\\\y=-\frac{2}{3}x+b\\\\-2=-\frac{2}{\not3_{1} }\cdot\not6^2+b\\\\-2=-4+b\\\\-2+4=b\\\\b=2\\\\\underline{y=-\frac{2}{3}x+2}[/tex]
[tex]e)\\\\3x+y-3=0\\\\y=-3x+3\\\\a_{1}=-3\\\\a_{1}\cdot a_{2}=-1\\\\-3a_{2} =-1\ \ |:(-3)\\\\a_{2}=\frac{1}{3}\\\\y=\frac{1}{3}x+b\\\\-2=\frac{1}{\not3_{1}}\cdot\not6^2+b\\\\-2=2+b\\\\-2-2=b\\\\b=-4\\\\\underline{y=\frac{1}{3}x-4}\\\\\\f)\\\\x+2y-3=0\\\\2y=-x+3\ \ |:2\\\\y=-\frac{1}{2}x+\frac{3}{2}\\\\a_{1}=-\frac{1}{2}\\\\a_{1}\cdot a_{2}=-1\\\\-\frac{1}{2}a_{2}=-1\ \ |:(-\frac{1}{2})\\\\a_{2}=1\cdot2\\\\a_{2}=2\\\\y=2x+b[/tex]
[tex]-2=2\cdot6+b\\\\-2=12+b\\\\-2-12=b\\\\b=-14\\\\\underline{y=2x-14}[/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
Proste są prostopadłe, jeżeli ich współczynniki kierunkowe spełniają zależność a₁ · a₂ = -1
Postać kierunkowa prostej to y=ax+b
gdzie:
a - współczynnik kierunkowy prostej
b - wyraz wolny
[tex]a)\\\\y=-2x+4\\\\a_{1}=-2\\\\a_{1}\cdot a_{2}=-1\\\\-2a_{2}=-1\ \ |:(-2)\\\\a_{2}=\frac{1}{2}\\\\y=\frac{1}{2}x+b\\\\Prosta\ \ ta\ \ przechodzi\ \ przez\ \ punkt\ \ P(6,-2)\ \ zatem,\\\\-2=\frac{1}{\not2_{1}}\cdot\not6^3+b\\\\-2=3+b\\\\-2-3=b\\\\b=-5\\\\\underline{y=\frac{1}{2}x-5}[/tex]
[tex]b)\\\\y=3x-1\\\\a_{1}=3\\\\a_{1}\cdot a_{2}=-1\\\\3a_{2}=-1\ \ |:3\\\\a_{2}=-\frac{1}{3}\\\\y=-\frac{1}{3}x+b\\\\-2=-\frac{1}{\not3_{1}}\cdot\not6^2+b\\\\-2=-2+b\\\\-2+2=b\\\\b=0\\\\y=-\frac{1}{3}x+0\\\\\underline{y=-\frac{1}{3}x}\\\\\\c)\\\\y=-x+6\\\\a_{1}=-1\\\\a_{1}\cdot a_{2}=-1\\\\-a_{2}=-1\ \ |\cdot(-1)\\\\a_{2}=1\\\\y=x+b\\\\-2=6+b\\\\-2-6=b\\\\b=-8[/tex]
[tex]\underline{y=x-8}[/tex]
[tex]d)\\\\y=1,5x-2,5\\\\a_{1}=1,5\\\\a_{1}\cdot a_{2}=-1\\\\1,5a_{2}=-1\ \ |:1,5\\\\a_{2}=-1:\frac{15}{10}\\\\a_{2} =-1:\frac{3}{2}\\\\a_{2}=-1\cdot\frac{2}{3}\\\\a_{2}=-\frac{2}{3}\\\\y=-\frac{2}{3}x+b\\\\-2=-\frac{2}{\not3_{1} }\cdot\not6^2+b\\\\-2=-4+b\\\\-2+4=b\\\\b=2\\\\\underline{y=-\frac{2}{3}x+2}[/tex]
[tex]e)\\\\3x+y-3=0\\\\y=-3x+3\\\\a_{1}=-3\\\\a_{1}\cdot a_{2}=-1\\\\-3a_{2} =-1\ \ |:(-3)\\\\a_{2}=\frac{1}{3}\\\\y=\frac{1}{3}x+b\\\\-2=\frac{1}{\not3_{1}}\cdot\not6^2+b\\\\-2=2+b\\\\-2-2=b\\\\b=-4\\\\\underline{y=\frac{1}{3}x-4}\\\\\\f)\\\\x+2y-3=0\\\\2y=-x+3\ \ |:2\\\\y=-\frac{1}{2}x+\frac{3}{2}\\\\a_{1}=-\frac{1}{2}\\\\a_{1}\cdot a_{2}=-1\\\\-\frac{1}{2}a_{2}=-1\ \ |:(-\frac{1}{2})\\\\a_{2}=1\cdot2\\\\a_{2}=2\\\\y=2x+b[/tex]
[tex]-2=2\cdot6+b\\\\-2=12+b\\\\-2-12=b\\\\b=-14\\\\\underline{y=2x-14}[/tex]