Sebuah elips mempunyai titik pusat (4,-1) dan titik fokus (1,-1). Jika elips melalui titik (8,0), persamaan elips tersebut .... A. (x - 4)^2/18 + (y + 1)^2/9 = 1 B. (x - 4)^2/21 + (y + 1)^2/9 = 1 C. (x - 4)^2/24 + (y + 1)^2/9 = 1 D. (x - 4)^2/27 + (y + 1)^2/9 = 1 E. (x - 4)^2/30 + (y + 1)^2/9 = 1
Syubbana
Titik pusat = (p,q) = (4,-1) titik fokus = (1,-1) = (p-c , q) p-c = 1 4-c = 1 c = 3 titik fokus yg lain = (p+c , q) = (7,-1) melalui titik (8,0)
(x-p)^2 + (y-q)^2 = 1 a^2 b^2
(8-4)^2 + (1)^2 = 1 b^2+9 b^2
16 + 1 = 1 b^2+9 b^2
b^4 - 8b^2 -9 = 0 (b^2 -9)(b^2+1) = 0 b^2 = 9
a^2 = c^2 + b^2 = 9+9 = 18
jadi persamaan elipnya
(x-4)^2 + (y+1)^2 = 1 18 9
jawaban A
3 votes Thanks 2
LiaStelia
Terima kasih banyak Bu, atas jawabannya :D
titik fokus = (1,-1) = (p-c , q)
p-c = 1
4-c = 1
c = 3
titik fokus yg lain = (p+c , q) = (7,-1)
melalui titik (8,0)
(x-p)^2 + (y-q)^2 = 1
a^2 b^2
(8-4)^2 + (1)^2 = 1
b^2+9 b^2
16 + 1 = 1
b^2+9 b^2
b^4 - 8b^2 -9 = 0
(b^2 -9)(b^2+1) = 0
b^2 = 9
a^2 = c^2 + b^2
= 9+9
= 18
jadi persamaan elipnya
(x-4)^2 + (y+1)^2 = 1
18 9
jawaban A