Explicación paso a paso:
( 2 , 6 ) y ( 4 , 1 )
[tex]x_{1}[/tex] [tex]y_{1}[/tex] [tex]x_{2}[/tex] [tex]y_{2}[/tex]
Hallamos la pendiente:
m = [tex]\frac{y_{2}-y_{1} }{x_{2}-x_{1}}[/tex] = [tex]\frac{1 - 6}{4 - 2} = \frac{-5}{2}[/tex]
Remplazamos en la recta:
[tex]y - y_{1} = m (x - x_{1} )[/tex]
[tex](y - 6) = -\frac{5}{2} (x-2)[/tex]
[tex](y -6) = -\frac{5x+10}{2}[/tex]
[tex]2y - 12 = -5x +10[/tex]
[tex]5x + 2y -12 +10=0[/tex]
[tex]5x+2y-2=0[/tex]
RESPUESTA:
5x + 2y - 2 = 0
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
Explicación paso a paso:
( 2 , 6 ) y ( 4 , 1 )
[tex]x_{1}[/tex] [tex]y_{1}[/tex] [tex]x_{2}[/tex] [tex]y_{2}[/tex]
Hallamos la pendiente:
m = [tex]\frac{y_{2}-y_{1} }{x_{2}-x_{1}}[/tex] = [tex]\frac{1 - 6}{4 - 2} = \frac{-5}{2}[/tex]
Remplazamos en la recta:
[tex]y - y_{1} = m (x - x_{1} )[/tex]
[tex](y - 6) = -\frac{5}{2} (x-2)[/tex]
[tex](y -6) = -\frac{5x+10}{2}[/tex]
[tex]2y - 12 = -5x +10[/tex]
[tex]5x + 2y -12 +10=0[/tex]
[tex]5x+2y-2=0[/tex]
RESPUESTA:
5x + 2y - 2 = 0