Tema : Ecuaciones de Segundo Grado
Respuesta:
Hola la respuesta es → [tex]x = \frac{4}{3} , x = -\frac{5}{2} \\[/tex]
Explicación paso a paso:
[tex]ax^{2} + bx + c = 0 \\\\x1 = \frac{-b\frac{+}{-} \sqrt{b^{2} -4ac } }{2a} \\\\a = 6 , b = 7 , c = -20 \\\\x1 = \frac{-7\frac{+}{-} \sqrt{7^{2} -4. 6 ( -20) } }{2.6 }\\\\\sqrt{7^{2}- 4 . 6 ( -20 ) } \\[/tex]
[tex]- ( - a ) = a \\\\\sqrt{7^{2}+ 4 . 6 - 20 } \\\\4 . 6 . 20 = 480 \\\\\sqrt{7^{2}+ 480 } \\\\7^{2} = 49\\\\\sqrt{49 + 480 } = 529 \\\\\sqrt{529} \\\\529 = 23^{2} \\\\x1 = \frac{-7 + 23 }{2 . 6 }[/tex]
[tex]x = \frac{-7 + 23 }{2 . 6 } \\\\- 7 + 23 = 16\\\\\frac{16}{2 . 6 } \\\\2 . 6 = 12 \\\\\frac{16}{12} \\\\tc = 4 \\\\\frac{4}{3} \\\\\frac{-30}{12} \\\\-\frac{30}{12} = -\frac{5}{6} \\\\x = \frac{4}{3} , x = -\frac{5}{2} R//[/tex]
Espero te sirva saludos suerte
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
Tema : Ecuaciones de Segundo Grado
Respuesta:
Hola la respuesta es → [tex]x = \frac{4}{3} , x = -\frac{5}{2} \\[/tex]
Explicación paso a paso:
[tex]ax^{2} + bx + c = 0 \\\\x1 = \frac{-b\frac{+}{-} \sqrt{b^{2} -4ac } }{2a} \\\\a = 6 , b = 7 , c = -20 \\\\x1 = \frac{-7\frac{+}{-} \sqrt{7^{2} -4. 6 ( -20) } }{2.6 }\\\\\sqrt{7^{2}- 4 . 6 ( -20 ) } \\[/tex]
[tex]- ( - a ) = a \\\\\sqrt{7^{2}+ 4 . 6 - 20 } \\\\4 . 6 . 20 = 480 \\\\\sqrt{7^{2}+ 480 } \\\\7^{2} = 49\\\\\sqrt{49 + 480 } = 529 \\\\\sqrt{529} \\\\529 = 23^{2} \\\\x1 = \frac{-7 + 23 }{2 . 6 }[/tex]
[tex]x = \frac{-7 + 23 }{2 . 6 } \\\\- 7 + 23 = 16\\\\\frac{16}{2 . 6 } \\\\2 . 6 = 12 \\\\\frac{16}{12} \\\\tc = 4 \\\\\frac{4}{3} \\\\\frac{-30}{12} \\\\-\frac{30}{12} = -\frac{5}{6} \\\\x = \frac{4}{3} , x = -\frac{5}{2} R//[/tex]
Espero te sirva saludos suerte