Twierdzenia:
[tex]a^n\cdot a^m=a^{n+m}\\\\\dfrac{a^n}{a^m}=a^{n-m}\qquad a\neq0[/tex]
Porównywanie ułamków:
[tex]a=(-2)^{10}=2^{10}\\\\b=-2^{11}\\\\c=-2^{12}\\\\\dfrac{b+c}{a}=\dfrac{-2^{11}+\left(-2^{12}\right)}{2^{10}}=\dfrac{-2^{11}+\left(-2^{11+1}\right)}{2^{10}}=\dfrac{-2^{11}+\left(-2^{11}\cdot2^1\right)}{2^{10}}\\\\=\dfrac{-3\cdot2^{11}}{2^{10}}=-3\cdot2^{11-10}=-3\cdot2=\boxed{-6}\to\boxed{D}[/tex]
[tex]\dfrac{11}{15}[/tex]
[tex]\dfrac{3}{5}=\dfrac{3\cdot3}{5\cdot3}=\dfrac{9}{15}\\\\\dfrac{4}{5}=\dfrac{4\cdot3}{5\cdot3}=\dfrac{12}{15}\\\\\boxed{\dfrac{9}{15} < \dfrac{11}{15} < \dfrac{12}{15}}[/tex]
[tex]0,5[/tex]
[tex]\dfrac{3}{5}=\dfrac{3\cdot2}{5\cdot2}=\dfrac{6}{10}=0,6\\\\\dfrac{4}{5}=\dfrac{4\cdot2}{5\cdot2}=\dfrac{8}{10}=0,8\\\\\boxed{0,5 < 0,6 < 0,8}[/tex]
[tex]\dfrac{7}{10}=0,7\\\\\boxed{0,6 < 0,7 < 0,8}[/tex]
[tex]0,(6)=0,666...\\\\\boxed{0,6 < 0,666... < 0,8}[/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Zad.1 D. -6
Zad.2 C. 3
Działania na potęgach. Porównywanie ułamków.
Twierdzenia:
[tex]a^n\cdot a^m=a^{n+m}\\\\\dfrac{a^n}{a^m}=a^{n-m}\qquad a\neq0[/tex]
Porównywanie ułamków:
ROZWIĄZANIA:
Zad.1
[tex]a=(-2)^{10}=2^{10}\\\\b=-2^{11}\\\\c=-2^{12}\\\\\dfrac{b+c}{a}=\dfrac{-2^{11}+\left(-2^{12}\right)}{2^{10}}=\dfrac{-2^{11}+\left(-2^{11+1}\right)}{2^{10}}=\dfrac{-2^{11}+\left(-2^{11}\cdot2^1\right)}{2^{10}}\\\\=\dfrac{-3\cdot2^{11}}{2^{10}}=-3\cdot2^{11-10}=-3\cdot2=\boxed{-6}\to\boxed{D}[/tex]
Zad.2
[tex]\dfrac{11}{15}[/tex]
[tex]\dfrac{3}{5}=\dfrac{3\cdot3}{5\cdot3}=\dfrac{9}{15}\\\\\dfrac{4}{5}=\dfrac{4\cdot3}{5\cdot3}=\dfrac{12}{15}\\\\\boxed{\dfrac{9}{15} < \dfrac{11}{15} < \dfrac{12}{15}}[/tex]
JEST
[tex]0,5[/tex]
[tex]\dfrac{3}{5}=\dfrac{3\cdot2}{5\cdot2}=\dfrac{6}{10}=0,6\\\\\dfrac{4}{5}=\dfrac{4\cdot2}{5\cdot2}=\dfrac{8}{10}=0,8\\\\\boxed{0,5 < 0,6 < 0,8}[/tex]
NIE JEST
[tex]\dfrac{7}{10}=0,7\\\\\boxed{0,6 < 0,7 < 0,8}[/tex]
JEST
[tex]0,(6)=0,666...\\\\\boxed{0,6 < 0,666... < 0,8}[/tex]
JEST
Odp: C. 3