[tex] \frac{2}{ \sqrt{7} + \sqrt{5} } = [/tex]
[tex] \frac{2}{ \sqrt{7} + \sqrt{5} } · \frac{ \sqrt{7} - \sqrt{5} }{ \sqrt{7} - \sqrt{5} } = [/tex]
[tex] \frac{2( \sqrt{7} - \sqrt{5}) }{( \sqrt{7} + \sqrt{5})( \sqrt{?} - \sqrt{5}) } = [/tex]
[tex] \frac{2( \sqrt{7} - \sqrt{5}) }{ ({ \sqrt{7}) }^{2} - { (\sqrt{5} )}^{2} } = [/tex]
[tex] \frac{2 \sqrt{7} - 2 \sqrt{5} }{7 - 5} = [/tex]
[tex] \frac{2 \sqrt{7} - 2 \sqrt{5} }{2} = [/tex]
[tex] \sqrt{7} - \sqrt{5} [/tex]
[tex] \frac{1}{ \sqrt{3} - \sqrt{2} } = [/tex]
[tex] \frac{1}{ \sqrt{3} - \sqrt{2} } · \frac{ \sqrt{3} + \sqrt{2} }{ \sqrt{3} + \sqrt{2} } = [/tex]
[tex] \frac{ \sqrt{3} + \sqrt{2} }{( \sqrt{3} - \sqrt{2} )( \sqrt{3} + \sqrt{2} ) } = [/tex]
[tex] \frac{ \sqrt{3} + \sqrt{2} }{ ({ \sqrt{3} )}^{2} - { (\sqrt{2} )}^{2} } = [/tex]
[tex] \frac{ \sqrt{3} + \sqrt{2} }{3 - 2} = [/tex]
[tex] \frac{ \sqrt{3} + \sqrt{2} }{1} = [/tex]
[tex] \sqrt{3} + \sqrt{2} [/tex]
[tex] \frac{2}{ \sqrt{5} + \sqrt{3} } = [/tex]
[tex] \frac{2}{ \sqrt{5} + \sqrt{3} } · \frac{ \sqrt{5} - \sqrt{3} }{ \sqrt{5} - \sqrt{3} } = [/tex]
[tex] \frac{2( \sqrt{5} - \sqrt{3}) }{( \sqrt{5} + \sqrt{3} )( \sqrt{5} - \sqrt{3} )} = [/tex]
[tex] \frac{2( \sqrt{5} - \sqrt{3} )}{ { (\sqrt{5}) }^{2} - { (\sqrt{3}) }^{2} } = [/tex]
[tex] \frac{2 \sqrt{5} - 2 \sqrt{3} }{5 - 3} = [/tex]
[tex] \frac{2 \sqrt{5} - 2 \sqrt{3} }{2} = [/tex]
[tex] \sqrt{5} - \sqrt{3} [/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Verified answer
a
[tex] \frac{2}{ \sqrt{7} + \sqrt{5} } = [/tex]
[tex] \frac{2}{ \sqrt{7} + \sqrt{5} } · \frac{ \sqrt{7} - \sqrt{5} }{ \sqrt{7} - \sqrt{5} } = [/tex]
[tex] \frac{2( \sqrt{7} - \sqrt{5}) }{( \sqrt{7} + \sqrt{5})( \sqrt{?} - \sqrt{5}) } = [/tex]
[tex] \frac{2( \sqrt{7} - \sqrt{5}) }{ ({ \sqrt{7}) }^{2} - { (\sqrt{5} )}^{2} } = [/tex]
[tex] \frac{2 \sqrt{7} - 2 \sqrt{5} }{7 - 5} = [/tex]
[tex] \frac{2 \sqrt{7} - 2 \sqrt{5} }{2} = [/tex]
[tex] \sqrt{7} - \sqrt{5} [/tex]
b
[tex] \frac{1}{ \sqrt{3} - \sqrt{2} } = [/tex]
[tex] \frac{1}{ \sqrt{3} - \sqrt{2} } · \frac{ \sqrt{3} + \sqrt{2} }{ \sqrt{3} + \sqrt{2} } = [/tex]
[tex] \frac{ \sqrt{3} + \sqrt{2} }{( \sqrt{3} - \sqrt{2} )( \sqrt{3} + \sqrt{2} ) } = [/tex]
[tex] \frac{ \sqrt{3} + \sqrt{2} }{ ({ \sqrt{3} )}^{2} - { (\sqrt{2} )}^{2} } = [/tex]
[tex] \frac{ \sqrt{3} + \sqrt{2} }{3 - 2} = [/tex]
[tex] \frac{ \sqrt{3} + \sqrt{2} }{1} = [/tex]
[tex] \sqrt{3} + \sqrt{2} [/tex]
c
[tex] \frac{2}{ \sqrt{5} + \sqrt{3} } = [/tex]
[tex] \frac{2}{ \sqrt{5} + \sqrt{3} } · \frac{ \sqrt{5} - \sqrt{3} }{ \sqrt{5} - \sqrt{3} } = [/tex]
[tex] \frac{2( \sqrt{5} - \sqrt{3}) }{( \sqrt{5} + \sqrt{3} )( \sqrt{5} - \sqrt{3} )} = [/tex]
[tex] \frac{2( \sqrt{5} - \sqrt{3} )}{ { (\sqrt{5}) }^{2} - { (\sqrt{3}) }^{2} } = [/tex]
[tex] \frac{2 \sqrt{5} - 2 \sqrt{3} }{5 - 3} = [/tex]
[tex] \frac{2 \sqrt{5} - 2 \sqrt{3} }{2} = [/tex]
[tex] \sqrt{5} - \sqrt{3} [/tex]