Respuesta:
28 años
Explicación paso a paso:
Numerador
[tex] {3}^{2a + 1} = {3}^{2a} \times {3}^{1} \\ {9}^{a + 2} = {9}^{a} \times {9}^{2} = {3}^{2a} \times {3}^{4} [/tex]
factorizando:
[tex] {3}^{2a} ( {3}^{1} + {3}^{4} ) = {3}^{2a} (84)[/tex]
Denominador:
[tex] \frac{ {3}^{3 + 2a} }{9} = \frac{ {3}^{3} \times {3}^{2a} }{ {3}^{2} } = 3 \times {3}^{2a} [/tex]
Entonces:
[tex] \frac{ {3}^{2a} \times 84}{3 \times {3}^{2a} } = \frac{84}{3} = 28[/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Respuesta:
28 años
Explicación paso a paso:
Numerador
[tex] {3}^{2a + 1} = {3}^{2a} \times {3}^{1} \\ {9}^{a + 2} = {9}^{a} \times {9}^{2} = {3}^{2a} \times {3}^{4} [/tex]
factorizando:
[tex] {3}^{2a} ( {3}^{1} + {3}^{4} ) = {3}^{2a} (84)[/tex]
Denominador:
[tex] \frac{ {3}^{3 + 2a} }{9} = \frac{ {3}^{3} \times {3}^{2a} }{ {3}^{2} } = 3 \times {3}^{2a} [/tex]
Entonces:
[tex] \frac{ {3}^{2a} \times 84}{3 \times {3}^{2a} } = \frac{84}{3} = 28[/tex]
28 años