[tex]t=\frac{1}{a+b} (at_{1} +bt_{2})[/tex]
dokonajmy przekształceń:
[tex]t=\frac{at_{1}+bt_{2}}{a+b}[/tex]
[tex]t(a+b) = at_{1}+bt_{2}[/tex]
[tex]at_{1} = t(a+b)-bt_{2}[/tex]
teraz wyznaczmy t₁:
[tex]t_{1}=\frac{t(a+b)-bt_{2}}{a}[/tex]
oraz wyznaczmy a:
[tex]a = \frac{t(a+b)-bt_{2}}{t_{1}}[/tex]
W razie pytań pisz
Odpowiedź:
Szczegółowe wyjaśnienie: ₁ ₂
t = [1/(a + b)](at₁ + bt₂) = (at₁ + bt₂)/(a + b) wyznacz t₁ oraz a
Wyznaczam t₁
t = (at₁ + bt₂)/(a + b) to (at₁ + bt₂)/(a + b) = t /* (a + b) to
(at₁ + bt₂) = t(a + b) to at₁ = t(a + b) - bt₂ /: a to
to: Odpowiedź: t₁ = [t(a + b) - bt₂] /a
Wyznaczam a
(at₁ + bt₂)/(a + b) = t to (a + b)/(at₁ + bt₂) = 1/t /* (at₁ + bt₂) to
(a + b) = (at₁ + bt₂)/t = at₁/t + bt₂/t to a - at₁/t = bt₂/t + b to
a(1 - t₁/t) = bt₂/t + b to a(1 - t₁)/t = b(t₂/t + 1) to
a(t - t₁)/t = b(t₂ + t)/t /* t to a(t - t₁) = b(t + t₂) /: (t - t₁) to
a = b(t + t₂)/(t - t₁)
to: Odpowiedź: a = b(t + t₂)/(t - t₁)
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
[tex]t=\frac{1}{a+b} (at_{1} +bt_{2})[/tex]
dokonajmy przekształceń:
[tex]t=\frac{at_{1}+bt_{2}}{a+b}[/tex]
[tex]t(a+b) = at_{1}+bt_{2}[/tex]
[tex]at_{1} = t(a+b)-bt_{2}[/tex]
teraz wyznaczmy t₁:
[tex]t_{1}=\frac{t(a+b)-bt_{2}}{a}[/tex]
oraz wyznaczmy a:
[tex]a = \frac{t(a+b)-bt_{2}}{t_{1}}[/tex]
W razie pytań pisz
Verified answer
Odpowiedź:
Szczegółowe wyjaśnienie: ₁ ₂
t = [1/(a + b)](at₁ + bt₂) = (at₁ + bt₂)/(a + b) wyznacz t₁ oraz a
Wyznaczam t₁
t = (at₁ + bt₂)/(a + b) to (at₁ + bt₂)/(a + b) = t /* (a + b) to
(at₁ + bt₂) = t(a + b) to at₁ = t(a + b) - bt₂ /: a to
to: Odpowiedź: t₁ = [t(a + b) - bt₂] /a
Wyznaczam a
(at₁ + bt₂)/(a + b) = t to (a + b)/(at₁ + bt₂) = 1/t /* (at₁ + bt₂) to
(a + b) = (at₁ + bt₂)/t = at₁/t + bt₂/t to a - at₁/t = bt₂/t + b to
a(1 - t₁/t) = bt₂/t + b to a(1 - t₁)/t = b(t₂/t + 1) to
a(t - t₁)/t = b(t₂ + t)/t /* t to a(t - t₁) = b(t + t₂) /: (t - t₁) to
a = b(t + t₂)/(t - t₁)
to: Odpowiedź: a = b(t + t₂)/(t - t₁)