Un granjero tiene 110 animales entre gallinas, cerdos y pavos. Si 1/8 del número de gallinas, más 1/9 del número de cerdos, más 1/5 del número de pavos equivalen a 15; y la suma del número de gallinas con la de pavos es 65, ¿cuántos animales de cada clase tiene dicho granjero?
Respuesta:
Son 40 Gallinas, 25 pavos y 45 cerdos
Explicación paso a paso:
vamos a llamar x=gallinas y=pavos z=cerdos
x+y+z=110 (Total de animales)
x+y=65
x + z + y =15
8 9 5
sabemos que tiene 45 cerdos,porque el numero total de la suma entre gallinas y pavos es 65
es decir: (110animales -65(gallinas+pavos) =45cerdos ).
entonces eliminamos la variable z y le damos este valor:
z=45
x+y+z=110
x+y=110-45
x+y=65
x + z + y =15
8 9 5
x + z + y =15
8 9 5
x + y + 5=15
8 5
5x+8y+(8)(5)5 =15
40
5x+8y+200=15(40)
5x+8y+2000=600
5x+8y=600-200
5x+8y=400
nos queda un sistema de 2x2
x+y=65
5x+8y=400
hacemos reducción
-8(x+y=65)-------------------------8x-8y= -520
5x+8y=400-------------------------5x+8y=400
-3x= -120--------------x= -120/-3---------------x=40
si x=40
x+y=65
40+y=65
y=65-40
y=25
x=40 y=25 z=45