Odpowiedź:
Szczegółowe wyjaśnienie:
a) boki: a = ?
b = 60
c = 61
[tex]a^{2} = 61^{2} - 60^{2}\\ a^{2} = 3721 - 3600\\ a^{2} = 121 / \sqrt{}\\ a = 11[/tex]
sin = 11/61
tg = 11/60
ctg = 60/11
b) boki:
12/5 = 2 2/5
a = 5
b = 12
c = [tex]\sqrt{144 + 25}[/tex] = [tex]\sqrt{169}[/tex]
c = 13
sin = 12/13
cos = 5/13
ctg = 5/12
a.
[tex]cos\alpha =\frac{60}{61}[/tex] α∈(0°,90°) ⇒ I ćw.
[tex]sin^2\alpha +cos^2\alpha =1[/tex]
[tex]sin^2\alpha +(\frac{60}{61} )^2=1\\sin^2\alpha +\frac{3600}{3721} -1=0\\sin^2\alpha -\frac{121}{3721} =0\\(sin\alpha -\frac{11}{61} )(sin\alpha +\frac{11}{61} )=0[/tex]
[tex]sin\alpha =\frac{11}{61}[/tex] ∈ I ćw. v [tex]sin\alpha =-\frac{11}{61}[/tex] ∉ I ćw.
[tex]tg\alpha =\frac{sin\alpha }{cos\alpha }[/tex]
[tex]tg\alpha =\frac{\frac{11}{61} }{\frac{60}{61} } =\frac{11}{61} *\frac{61}{60} =\frac{11}{60}[/tex] ∈ I ćw.
[tex]ctg\alpha =\frac{1}{tg\alpha }[/tex]
[tex]ctg\alpha =\frac{1}{\frac{11}{60} } =1*\frac{60}{11} =5\frac{5}{11}[/tex] ∈ I ćw.
b.
[tex]tg\alpha =2\frac{2}{5} =\frac{12}{5}[/tex] α∈(0°,90°) ⇒ I ćw.
[tex]ctg\alpha =\frac{1}{\frac{12}{5} } =\frac{5}{12}[/tex] ∈ I ćw.
[tex]\frac{12}{5} =\frac{sin\alpha }{cos\alpha }[/tex] /*cosα
[tex]sin\alpha =\frac{12}{5} cos\alpha[/tex] [***]
[tex](\frac{12}{5} cos\alpha )^2+cos^2\alpha =1\\\frac{144}{25} cos^2\alpha +cos^2\alpha =1\\\frac{169}{25} cos^2\alpha -1=0\\cos^2\alpha-\frac{25}{169} =0\\(cos\alpha -\frac{5}{13} )(cos\alpha +\frac{5}{13} )=0[/tex]
[tex]cos\alpha =\frac{5}{13}[/tex] ∈ I ćw. v [tex]cos\alpha =-\frac{5}{13}[/tex] ∉ I ćw.
[***]
[tex]sin\alpha =\frac{12}{5} *\frac{5}{13}=\frac{12}{13}[/tex] ∈ I ćw.
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Odpowiedź:
Szczegółowe wyjaśnienie:
a) boki: a = ?
b = 60
c = 61
[tex]a^{2} = 61^{2} - 60^{2}\\ a^{2} = 3721 - 3600\\ a^{2} = 121 / \sqrt{}\\ a = 11[/tex]
sin = 11/61
tg = 11/60
ctg = 60/11
b) boki:
12/5 = 2 2/5
a = 5
b = 12
c = [tex]\sqrt{144 + 25}[/tex] = [tex]\sqrt{169}[/tex]
c = 13
sin = 12/13
cos = 5/13
ctg = 5/12
Odpowiedź:
Szczegółowe wyjaśnienie:
a.
[tex]cos\alpha =\frac{60}{61}[/tex] α∈(0°,90°) ⇒ I ćw.
[tex]sin^2\alpha +cos^2\alpha =1[/tex]
[tex]sin^2\alpha +(\frac{60}{61} )^2=1\\sin^2\alpha +\frac{3600}{3721} -1=0\\sin^2\alpha -\frac{121}{3721} =0\\(sin\alpha -\frac{11}{61} )(sin\alpha +\frac{11}{61} )=0[/tex]
[tex]sin\alpha =\frac{11}{61}[/tex] ∈ I ćw. v [tex]sin\alpha =-\frac{11}{61}[/tex] ∉ I ćw.
[tex]tg\alpha =\frac{sin\alpha }{cos\alpha }[/tex]
[tex]tg\alpha =\frac{\frac{11}{61} }{\frac{60}{61} } =\frac{11}{61} *\frac{61}{60} =\frac{11}{60}[/tex] ∈ I ćw.
[tex]ctg\alpha =\frac{1}{tg\alpha }[/tex]
[tex]ctg\alpha =\frac{1}{\frac{11}{60} } =1*\frac{60}{11} =5\frac{5}{11}[/tex] ∈ I ćw.
b.
[tex]tg\alpha =2\frac{2}{5} =\frac{12}{5}[/tex] α∈(0°,90°) ⇒ I ćw.
[tex]ctg\alpha =\frac{1}{tg\alpha }[/tex]
[tex]ctg\alpha =\frac{1}{\frac{12}{5} } =\frac{5}{12}[/tex] ∈ I ćw.
[tex]tg\alpha =\frac{sin\alpha }{cos\alpha }[/tex]
[tex]\frac{12}{5} =\frac{sin\alpha }{cos\alpha }[/tex] /*cosα
[tex]sin\alpha =\frac{12}{5} cos\alpha[/tex] [***]
[tex]sin^2\alpha +cos^2\alpha =1[/tex]
[tex](\frac{12}{5} cos\alpha )^2+cos^2\alpha =1\\\frac{144}{25} cos^2\alpha +cos^2\alpha =1\\\frac{169}{25} cos^2\alpha -1=0\\cos^2\alpha-\frac{25}{169} =0\\(cos\alpha -\frac{5}{13} )(cos\alpha +\frac{5}{13} )=0[/tex]
[tex]cos\alpha =\frac{5}{13}[/tex] ∈ I ćw. v [tex]cos\alpha =-\frac{5}{13}[/tex] ∉ I ćw.
[***]
[tex]sin\alpha =\frac{12}{5} *\frac{5}{13}=\frac{12}{13}[/tex] ∈ I ćw.