Hasil dari [tex] \bf 5!+4!-3! = 138 [/tex] dan [tex] \bf 4(5)-7(7)+34(2) =39 [/tex]. Hal ini didapatkan dengan menerapkan konsep faktorial pada soal pertama dan perkalian pada soal kedua.
Penjelasan dengan langkah-langkah
Faktorial merupakan perkalian bilangan berurutan dan jika dituliskan dalam rumus ialah
Operasi Bilangan merupakan suatu operasi hitung dalam Matematika yang melibatkan penjumlahan, pengurangan, perkalian dan pembagian untuk model bentuk yang bermacam macam, seperti desimal, persen, pecahan, bilangan bulat, dan bentuk lainnya.
Penjumlahan yaitu menggabungkan atau menjumlahkan dua atau lebih bentuk bilangan sehingga menjadi bilangan baru yang lebih besar (tanda penjumlahan " + ").
Pengurangan yaitu mengambil sejumlah bilangan dari bilangan tertentu sehingga jumlah bilangannya berkurang menjadi bilangan baru yang lebih kecil (tanda pengurangan " - ").
Perkalian yaitu penjumlahan yang berulang yang dapat diartikan dengan menjumlakan bilangan yang sama sebanyak bilangan pengali-nya (tanda perkalian " × ").
[tex] \rm a \times b = \underbrace{a + a + a + .... + a}_{sebanyak~b} [/tex]
Pembagian yaitu pengurangan yang berulang yang dapat diartikan dengan membagi suatu bilangan dalam beberapa kelompok dengan jumlah yang sama (tanda pembagian " ÷ " atau " / ").
Hasil dari [tex] \bf 5!+4!-3! = 138 [/tex] dan [tex] \bf 4(5)-7(7)+34(2) =39 [/tex]. Hal ini didapatkan dengan menerapkan konsep faktorial pada soal pertama dan perkalian pada soal kedua.
Penjelasan dengan langkah-langkah
Faktorial merupakan perkalian bilangan berurutan dan jika dituliskan dalam rumus ialah
[tex] n!=n\times (n-1)\times (n-2)\times .... \times 2 \times 1 [/tex]
Operasi Bilangan merupakan suatu operasi hitung dalam Matematika yang melibatkan penjumlahan, pengurangan, perkalian dan pembagian untuk model bentuk yang bermacam macam, seperti desimal, persen, pecahan, bilangan bulat, dan bentuk lainnya.
Penjumlahan yaitu menggabungkan atau menjumlahkan dua atau lebih bentuk bilangan sehingga menjadi bilangan baru yang lebih besar (tanda penjumlahan " + ").
Pengurangan yaitu mengambil sejumlah bilangan dari bilangan tertentu sehingga jumlah bilangannya berkurang menjadi bilangan baru yang lebih kecil (tanda pengurangan " - ").
Perkalian yaitu penjumlahan yang berulang yang dapat diartikan dengan menjumlakan bilangan yang sama sebanyak bilangan pengali-nya (tanda perkalian " × ").
[tex] \rm a \times b = \underbrace{a + a + a + .... + a}_{sebanyak~b} [/tex]
Pembagian yaitu pengurangan yang berulang yang dapat diartikan dengan membagi suatu bilangan dalam beberapa kelompok dengan jumlah yang sama (tanda pembagian " ÷ " atau " / ").
Diketahui:
Ditanyakan: Hasil perhitungan
Penyelesaian Soal No. 1
Gunakan konsep faktorial :
[tex] \begin{aligned} &= 5!+4!-3! \\ &= (5\times 4\times 3\times 2\times 1)+(4\times 3\times 2\times 1)-(3\times 2\times 1 ) \\ &= (20\times 3\times 2\times 1)+(4\times 3\times 2\times 1)-(3\times 2\times 1 ) \\ &= (60\times 2\times 1)+(4\times 3\times 2\times 1)-(3\times 2\times 1 ) \\&= (120\times 1)+(4\times 3\times 2\times 1)-(3\times 2\times 1 ) \\ &= 120+(4\times 3\times 2\times 1)-(3\times 2\times 1 ) \\ &= 120+(12\times 2\times 1)-(3\times 2\times 1 ) \\ &= 120+(24\times 1)-(3\times 2\times 1 ) \\&= 120+24-(3\times 2\times 1 ) \\ &= 120+24-(6\times 1 ) \\ &= 120+24-6 \\ &= 144-6 \\ &=\boxed{ 138} \end{aligned} [/tex]
Penyelesaian Soal No. 2
Gunakan konsep perkalian :
[tex] \begin{aligned} &= 4(5)-7(7)+34(2) \\&= 20-7(7)+34(2) \\ &= 20-49+34(2) \\ &= 20-49+68 \\&= -29+68 \\ &= \boxed{39} \end{aligned} [/tex]
Jawaban Akhir & Kesimpulan:
Jadi, Hasil dari [tex] 5!+4!-3! = 138 [/tex] dan [tex] 4(5)-7(7)+34(2) =39 [/tex]
Pelajari Lebih Lanjut
Detail Jawaban
Kelas : XII
Mapel : Matematika
Bab : Kaidah Pencacahan
Kode : 12.2.7
Penjelasan dengan langkah-langkah:
5! + 4! - 3!
(5 x 4 x 3 x 2 x 1) + (4 x 3 x 2 x 1 ) - (3 x 2 x 1)
(20 x 4 x 3 x 2 x 1) + (12 x 2 x 1) - (6 x 1)
(60 x 3 x 2 x 1) + (24 x 1) - (6)
(120 x 1) + 24 - 6
120 + 24 - 6
144 - 6
=138
4(5) - 7(7) + 34(2)
(4 x 5) -(7 x 7) + (34 x 2)
20 - 49 + 68
-29 + 68
=39