[tex]n!=1\cdot2\cdot3\dots\cdot(n-2)\cdot(n-1)\cdot n\\{n\choose k}=\frac{n!}{k!\cdot(n-k)!}[/tex]
[tex](n-2)!\cdot(n-1)=(n-1)!\\n!\cdot(n+1)\cdot(n+2)=(n+2)!\\\frac{6!+5!}{6!-5!} =\frac{5!(6+1)}{5!(6-1)} =\frac{7}{5} \\[/tex]
[tex]\frac{8!}{5!\cdot3!} ={ 8 \choose 3}={8\choose 5}[/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
[tex]n!=1\cdot2\cdot3\dots\cdot(n-2)\cdot(n-1)\cdot n\\{n\choose k}=\frac{n!}{k!\cdot(n-k)!}[/tex]
[tex](n-2)!\cdot(n-1)=(n-1)!\\n!\cdot(n+1)\cdot(n+2)=(n+2)!\\\frac{6!+5!}{6!-5!} =\frac{5!(6+1)}{5!(6-1)} =\frac{7}{5} \\[/tex]
[tex]\frac{8!}{5!\cdot3!} ={ 8 \choose 3}={8\choose 5}[/tex]