Czym jest logarytmowanie?
Aby umieć sprawnie logarytmować trzeba znać potęgowanie:
[tex]a^n=\underbrace{a\cdot a\cdot a\cdot...\cdot a}_{n}[/tex]
ponieważ w logarytmowaniu:
[tex]log_ab=c \ \longleftrightarrow \ a^c=b \ \ \ (a > 0, \ a\neq1, \ b > 0)[/tex]
Podpunkt a)
[tex]log_{25}\frac{1}{5}=x\\\\25^x=\frac{1}{5}\\\\(5^2)^x=5^{-1}\\\\2x=-1 \ \ |:2\\\\x=-\frac{1}{2}[/tex]
[tex]log_\frac{1}{5}25=x\\\\(\frac{1}{5})^x=25\\\\(\frac{1}{5})^x=5^2\\\\(\frac{1}{5})^x=(\frac{1}{5})^{-2}\\\\x=-2[/tex]
[tex]log_{25}\frac{1}{5}+log_\frac{1}{5}25=-\frac{1}{2}+(-2)=\underline{-2\frac{1}{2}}[/tex]
Podpunkt b)
[tex]log_5\sqrt{125}=x\\\\5^x=\sqrt{125}\\\\5^x=\sqrt{5^3}\\\\5^x=5^{\frac{3}{2}}\\\\x=\frac{3}{2}=1,5[/tex]
[tex]log_{\sqrt5}125=x\\\\(\sqrt5)^x=125\\\\(5^{\frac{1}{2}})^x=5^3\\\\5^{\frac{1}{2}x}=3\\\\\frac{1}{2}x=3 \ \ |\cdot2\\\\x=6[/tex]
[tex]log_5\sqrt{125}-log_{\sqrt5}125=1,5-6=\underline{-4,5}[/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
Czym jest logarytmowanie?
Aby umieć sprawnie logarytmować trzeba znać potęgowanie:
[tex]a^n=\underbrace{a\cdot a\cdot a\cdot...\cdot a}_{n}[/tex]
ponieważ w logarytmowaniu:
[tex]log_ab=c \ \longleftrightarrow \ a^c=b \ \ \ (a > 0, \ a\neq1, \ b > 0)[/tex]
Podpunkt a)
[tex]log_{25}\frac{1}{5}=x\\\\25^x=\frac{1}{5}\\\\(5^2)^x=5^{-1}\\\\2x=-1 \ \ |:2\\\\x=-\frac{1}{2}[/tex]
[tex]log_\frac{1}{5}25=x\\\\(\frac{1}{5})^x=25\\\\(\frac{1}{5})^x=5^2\\\\(\frac{1}{5})^x=(\frac{1}{5})^{-2}\\\\x=-2[/tex]
[tex]log_{25}\frac{1}{5}+log_\frac{1}{5}25=-\frac{1}{2}+(-2)=\underline{-2\frac{1}{2}}[/tex]
Podpunkt b)
[tex]log_5\sqrt{125}=x\\\\5^x=\sqrt{125}\\\\5^x=\sqrt{5^3}\\\\5^x=5^{\frac{3}{2}}\\\\x=\frac{3}{2}=1,5[/tex]
[tex]log_{\sqrt5}125=x\\\\(\sqrt5)^x=125\\\\(5^{\frac{1}{2}})^x=5^3\\\\5^{\frac{1}{2}x}=3\\\\\frac{1}{2}x=3 \ \ |\cdot2\\\\x=6[/tex]
[tex]log_5\sqrt{125}-log_{\sqrt5}125=1,5-6=\underline{-4,5}[/tex]