Jawaban:
[tex]f(x) = \frac{2x + 2}{4x} \\ g(x) = x - 3[/tex]
[tex](f + g)(x) = f(x) + g(x) \\ (f + g)(x) = \frac{2x + 2}{4x} + (x - 3) \\ (f + g)(x) = \frac{2x + 2}{4x} + \frac{4x(x - 3)}{4x} \\ (f + g)(x) = \frac{2x + 2 + 4x(x - 3)}{4x} \\ (f + g)(x) = \frac{2x + 2 + 4 {x}^{2} - 12x}{4x} \\ (f + g)(x) = \frac{4 {x}^{2} - 10x + 2}{4x} \\ (f + g)(x) = \frac{1}{4x} (4 {x}^{2} - 10x + 2)[/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Jawaban:
[tex]f(x) = \frac{2x + 2}{4x} \\ g(x) = x - 3[/tex]
[tex](f + g)(x) = f(x) + g(x) \\ (f + g)(x) = \frac{2x + 2}{4x} + (x - 3) \\ (f + g)(x) = \frac{2x + 2}{4x} + \frac{4x(x - 3)}{4x} \\ (f + g)(x) = \frac{2x + 2 + 4x(x - 3)}{4x} \\ (f + g)(x) = \frac{2x + 2 + 4 {x}^{2} - 12x}{4x} \\ (f + g)(x) = \frac{4 {x}^{2} - 10x + 2}{4x} \\ (f + g)(x) = \frac{1}{4x} (4 {x}^{2} - 10x + 2)[/tex]