Odpowiedź:
[tex]a)\\\displaystyle f(x)=\frac{1}{4} x^{2} -1=\frac{1}{4} (x-0)^2-1\qquad W(0,-1)\\D= < 2,4 > \\p=0\notin D\\f(2)=\frac{1}{4} \cdot4-1=0\\f(4)=\frac{1}{4} \cdot4^2-1=4-1=3\\Z_w= < 0,3 > \\b)\\D=(-2,0)\\f(-2)=\frac{1}{4} \cdot (-2)^2-1=0\\f(0)=-1\\Z_w=(-1,0)\\c)\\D=(-4,2)\\p=0\in (-4,2)\\f(-4)=\frac{1}{4} \cdot(-4)^2-1=4-1=3\\f(2)=\frac{1}{4} \cdot4-1=0\\f(0)=-1\\Z_w= < -1,3)\\d)\\D=(-\infty ,4 > \\p=0\in (-4,2)\\f(4)=\frac{1}{4} \cdot(4)^2-1=4-1=3\\Z_w= < -1,3 >[/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Odpowiedź:
[tex]a)\\\displaystyle f(x)=\frac{1}{4} x^{2} -1=\frac{1}{4} (x-0)^2-1\qquad W(0,-1)\\D= < 2,4 > \\p=0\notin D\\f(2)=\frac{1}{4} \cdot4-1=0\\f(4)=\frac{1}{4} \cdot4^2-1=4-1=3\\Z_w= < 0,3 > \\b)\\D=(-2,0)\\f(-2)=\frac{1}{4} \cdot (-2)^2-1=0\\f(0)=-1\\Z_w=(-1,0)\\c)\\D=(-4,2)\\p=0\in (-4,2)\\f(-4)=\frac{1}{4} \cdot(-4)^2-1=4-1=3\\f(2)=\frac{1}{4} \cdot4-1=0\\f(0)=-1\\Z_w= < -1,3)\\d)\\D=(-\infty ,4 > \\p=0\in (-4,2)\\f(4)=\frac{1}{4} \cdot(4)^2-1=4-1=3\\Z_w= < -1,3 >[/tex]