Odpowiedź:
Niech c = I AB I > 0
I BC I = 15 I AC I = 5√2
I ∡ A I = α = 45°
Z tw. kosinusów mamy
15² = c² + ( 5√2)² - 2* c*5√2*cos 45°
225 = c² + 50 - 10√2 c* 0,5√2
225 = c² + 50 - 10 c
c² - 10 c - 175 = 0
Δ = ( - 10)²- 4*1*( - 175) = 100 + 700 = 800 = 400*2
√Δ = [tex]\sqrt{400*2} = 20\sqrt{2}[/tex]
[tex]c = \frac{10 +20\sqrt{2} }{2*1} = 5 + 10\sqrt{2}[/tex]
=========================
Szczegółowe wyjaśnienie:
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Odpowiedź:
Niech c = I AB I > 0
I BC I = 15 I AC I = 5√2
I ∡ A I = α = 45°
Z tw. kosinusów mamy
15² = c² + ( 5√2)² - 2* c*5√2*cos 45°
225 = c² + 50 - 10√2 c* 0,5√2
225 = c² + 50 - 10 c
c² - 10 c - 175 = 0
Δ = ( - 10)²- 4*1*( - 175) = 100 + 700 = 800 = 400*2
√Δ = [tex]\sqrt{400*2} = 20\sqrt{2}[/tex]
[tex]c = \frac{10 +20\sqrt{2} }{2*1} = 5 + 10\sqrt{2}[/tex]
=========================
Szczegółowe wyjaśnienie: