a) Jeśli sin alfa = 21/29, to:
cos alfa = sqrt(1 - sin^2 alfa) = sqrt(1 - (21/29)^2) = sqrt(400/841) = 20/29
tg alfa = sin alfa / cos alfa = (21/29) / (20/29) = 21/20
cotg alfa = 1 / tg alfa = 20/21
sec alfa = 1 / cos alfa = 29/20
cosec alfa = 1 / sin alfa = 29/21
b) Jeśli tg alfa = 3/4, to:
sin alfa = tg alfa / sqrt(1 + tg^2 alfa) = (3/4) / sqrt(1 + (3/4)^2) = 3/5
cos alfa = sqrt(1 - sin^2 alfa) = sqrt(1 - (3/5)^2) = 4/5
cotg alfa = 1 / tg alfa = 4/3
sec alfa = 1 / cos alfa = 5/4
cosec alfa = 1 / sin alfa = 5/3
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
a) Jeśli sin alfa = 21/29, to:
cos alfa = sqrt(1 - sin^2 alfa) = sqrt(1 - (21/29)^2) = sqrt(400/841) = 20/29
tg alfa = sin alfa / cos alfa = (21/29) / (20/29) = 21/20
cotg alfa = 1 / tg alfa = 20/21
sec alfa = 1 / cos alfa = 29/20
cosec alfa = 1 / sin alfa = 29/21
b) Jeśli tg alfa = 3/4, to:
sin alfa = tg alfa / sqrt(1 + tg^2 alfa) = (3/4) / sqrt(1 + (3/4)^2) = 3/5
cos alfa = sqrt(1 - sin^2 alfa) = sqrt(1 - (3/5)^2) = 4/5
cotg alfa = 1 / tg alfa = 4/3
sec alfa = 1 / cos alfa = 5/4
cosec alfa = 1 / sin alfa = 5/3