Jawaban:
Sisi miring segitiga 1
BC² = AB² + AC²
BC² = 3² + 4²
BC² = 9 + 16
BC² = 25
BC = √25
BC = 5 cm
P = BD
BD² = CD² - BC²
BD² = 13² - 5²
BD² = 169 - 25
BD² = 144
BD = √144
BD = 12 cm
Jawaban: C. 12 cm
[tex] \sf {p}^{2} = {c}^{2} - {( \sqrt{ {a}^{2} + {b}^{2} } )}^{2}[/tex]
[tex] \sf {p}^{2} = {13}^{2} - {( \sqrt{ {4}^{2} + {3}^{2} } )}^{2}[/tex]
[tex] \sf {p}^{2} = {13}^{2} - {( \sqrt{16 + 9} )}^{2}[/tex]
[tex] \sf {p}^{2} = {13}^{2} - {( \sqrt{25} )}^{2}[/tex]
[tex] \sf {p}^{2} = {13}^{2} - ( {5}^{2} )[/tex]
[tex] \sf {p}^{2} = 169 - 25[/tex]
[tex] \sf {p}^{2} = 144[/tex]
[tex] \sf p = \sqrt{144} [/tex]
[tex] \sf p = \red{12 \: cm}[/tex]
'비상' (Svt)
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
Jawaban:
Sisi miring segitiga 1
BC² = AB² + AC²
BC² = 3² + 4²
BC² = 9 + 16
BC² = 25
BC = √25
BC = 5 cm
P = BD
BD² = CD² - BC²
BD² = 13² - 5²
BD² = 169 - 25
BD² = 144
BD = √144
BD = 12 cm
Jawaban: C. 12 cm
Verified answer
Jawaban:
Penyelesaian :
Mencari nilai p
[tex] \sf {p}^{2} = {c}^{2} - {( \sqrt{ {a}^{2} + {b}^{2} } )}^{2}[/tex]
[tex] \sf {p}^{2} = {13}^{2} - {( \sqrt{ {4}^{2} + {3}^{2} } )}^{2}[/tex]
[tex] \sf {p}^{2} = {13}^{2} - {( \sqrt{16 + 9} )}^{2}[/tex]
[tex] \sf {p}^{2} = {13}^{2} - {( \sqrt{25} )}^{2}[/tex]
[tex] \sf {p}^{2} = {13}^{2} - ( {5}^{2} )[/tex]
[tex] \sf {p}^{2} = 169 - 25[/tex]
[tex] \sf {p}^{2} = 144[/tex]
[tex] \sf p = \sqrt{144} [/tex]
[tex] \sf p = \red{12 \: cm}[/tex]
'비상' (Svt)