Respuesta:
[tex]30[/tex]
Explicación paso a paso:
[tex]Hipotenusa:c = (5x+3)[/tex]
[tex]Cateto: a = (6x)[/tex]
[tex]Cateto: b = (2x+1)[/tex]
Aplicando el teorema de Pitágoras:
[tex]c^{2} = a^{2} +b^{2}[/tex]
[tex](5x+3)^{2} =(6x)^{2} +(2x+1)^{2}[/tex]
Desarrollamos los productos notables.
[tex](5x)^{2} +2(5x)(3)+(3)^{2} = (6x)^{2} +(2x)^{2} +2(2x)(1)+(1)^{2}[/tex]
[tex]25x^{2} +30x+9=36x^{2} +4x^{2} +4x+1[/tex]
[tex](25x^{2} -36x^{2} -4x^{2} ) + (30x-4x)+(9-1)=0[/tex]
[tex]-15x^{2} +26x+8=0[/tex]
Por la fórmula general:
[tex]x = \frac{-b\frac{+}{}\sqrt{b^{2} -4ac} }{2a}[/tex]
[tex]a = -15 ; b = 26 ; c =8[/tex]
[tex]x = \frac{-26\frac{+}{}\sqrt{(26)^{2} -4(-15)(8)} }{2(-15)} =\frac{-26\frac{+}{} \sqrt{676+480} }{-30} = \frac{-26 \frac{+}{} \sqrt{1156} }{-30} =\frac{-26\frac{+}{}34 }{-30}[/tex]
[tex]x = \frac{-26-34}{-30} = \frac{-60}{-30}[/tex]
[tex]x = 2[/tex]
Sustituimos el valor de "x" para determinar las longitudes de los lados.
[tex]c = 5x + 3 = 5 ( 2 ) +3 = 10 + 3 = 13, entonces : c = 13[/tex]
[tex]a = 6x = 6 ( 2 ) = 12 , entonces: a = 12[/tex]
[tex]b = 2x +1 = 2(2) + 1 = 4 + 1 = 5 ,entonces: b = 5[/tex]
[tex]Perimetro: P = ?[/tex]
[tex]P = a+b+c[/tex]
[tex]P = 12+5+13[/tex]
[tex]Luego: P = 30[/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Verified answer
Respuesta:
[tex]30[/tex]
Explicación paso a paso:
[tex]Hipotenusa:c = (5x+3)[/tex]
[tex]Cateto: a = (6x)[/tex]
[tex]Cateto: b = (2x+1)[/tex]
Aplicando el teorema de Pitágoras:
[tex]c^{2} = a^{2} +b^{2}[/tex]
[tex](5x+3)^{2} =(6x)^{2} +(2x+1)^{2}[/tex]
Desarrollamos los productos notables.
[tex](5x)^{2} +2(5x)(3)+(3)^{2} = (6x)^{2} +(2x)^{2} +2(2x)(1)+(1)^{2}[/tex]
[tex]25x^{2} +30x+9=36x^{2} +4x^{2} +4x+1[/tex]
[tex](25x^{2} -36x^{2} -4x^{2} ) + (30x-4x)+(9-1)=0[/tex]
[tex]-15x^{2} +26x+8=0[/tex]
Por la fórmula general:
[tex]x = \frac{-b\frac{+}{}\sqrt{b^{2} -4ac} }{2a}[/tex]
[tex]a = -15 ; b = 26 ; c =8[/tex]
[tex]x = \frac{-26\frac{+}{}\sqrt{(26)^{2} -4(-15)(8)} }{2(-15)} =\frac{-26\frac{+}{} \sqrt{676+480} }{-30} = \frac{-26 \frac{+}{} \sqrt{1156} }{-30} =\frac{-26\frac{+}{}34 }{-30}[/tex]
[tex]x = \frac{-26-34}{-30} = \frac{-60}{-30}[/tex]
[tex]x = 2[/tex]
Sustituimos el valor de "x" para determinar las longitudes de los lados.
[tex]c = 5x + 3 = 5 ( 2 ) +3 = 10 + 3 = 13, entonces : c = 13[/tex]
[tex]a = 6x = 6 ( 2 ) = 12 , entonces: a = 12[/tex]
[tex]b = 2x +1 = 2(2) + 1 = 4 + 1 = 5 ,entonces: b = 5[/tex]
[tex]Perimetro: P = ?[/tex]
[tex]P = a+b+c[/tex]
[tex]P = 12+5+13[/tex]
[tex]Luego: P = 30[/tex]