Jawab:
cos 2x = \frac{7}{25}
Penjelasan dengan langkah-langkah:
1. menemukan nilai cos² x
tan x = \sqrt{sec^{2} x - 1} \\\frac{3}{4} = \sqrt{sec^{2} x - 1}\\\frac{9}{16} = sec^{2} x - 1\\\frac{9}{16} + 1 = \frac{9}{16} + \frac{16}{16} = \frac{9+16}{16} = \frac{25}{16} = sec^{2} x\\sec^{2} x = \frac{1}{cos^{2}x} = \frac{25}{16}\\cos^{2}x = \frac{16}{25}
2. menemukan sin² x
sin^{2} x= 1 - cos^{2} x\\sin^{2} x= 1 - \frac{16}{25} = \frac{25}{25} - \frac{16}{25} = \frac{25-16}{25} = \frac{9}{25}
3. final cos 2x
cos 2x = cos^{2}x-sin^{2}x = 1 - 2 \times sin^{2}x\\cos 2x = \frac{16}{25} - \frac{9}{25} = 1 - 2 \times \frac{9}{25}\\cos 2x = \frac{7}{25} = \frac{25}{25} - \frac{18}{25}\\cos 2x = \frac{7}{25} = \frac{7}{25}
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
r = akar (3^2 + 4^2) =5
cos 2a
= (cos a) ^2 - (sin a)^2
= (x/r)^2 - (y/r)^2
= (4/5)^2 - (3/5)^2
= 16/25 - 9/25
= 7/25
Jawab:
cos 2x = \frac{7}{25}
Penjelasan dengan langkah-langkah:
1. menemukan nilai cos² x
tan x = \sqrt{sec^{2} x - 1} \\\frac{3}{4} = \sqrt{sec^{2} x - 1}\\\frac{9}{16} = sec^{2} x - 1\\\frac{9}{16} + 1 = \frac{9}{16} + \frac{16}{16} = \frac{9+16}{16} = \frac{25}{16} = sec^{2} x\\sec^{2} x = \frac{1}{cos^{2}x} = \frac{25}{16}\\cos^{2}x = \frac{16}{25}
2. menemukan sin² x
sin^{2} x= 1 - cos^{2} x\\sin^{2} x= 1 - \frac{16}{25} = \frac{25}{25} - \frac{16}{25} = \frac{25-16}{25} = \frac{9}{25}
3. final cos 2x
cos 2x = cos^{2}x-sin^{2}x = 1 - 2 \times sin^{2}x\\cos 2x = \frac{16}{25} - \frac{9}{25} = 1 - 2 \times \frac{9}{25}\\cos 2x = \frac{7}{25} = \frac{25}{25} - \frac{18}{25}\\cos 2x = \frac{7}{25} = \frac{7}{25}