Jawaban:
a. π/3
Penjelasan dengan langkah-langkah:
[tex]₁∫² dx/(x√(x²-1)) \\ = ₁∫² \: \frac{1}{x \sqrt{ {x}^{2} - 1 } } dx \: (c = 1) \\ = lim _{a \: \to \: {1}^{ + } }(a∫² \frac{1}{x \sqrt{ {x}^{2} - 1} }dx ) \\ = a∫² \frac{1}{x \sqrt{ {x}^{2} - 1} }dx \\ = \int \frac{1}{x \sqrt{ {x}^{2} - {1}^{2} } } dx \\ \\ ingat \\ \int \frac{1}{ x \sqrt{ {x}^{2} - {a}^{2} } } dx \: = \frac{1}{a} \times a\sec( \frac{ |x| }{a} ) \\ \\ maka \\ \frac{1}{1} \times a\sec( \frac{ |x| }{1} ) = a\sec( |x| ) \\ = a\sec( |x| ) | {}^{2} _{a} \\ = a\sec( |2| ) - a \sec( |a| ) \\ = \frac{\pi}{3} - a \sec( |a| ) \\ = \frac{\pi}{3} [/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Verified answer
Jawaban:
a. π/3
Penjelasan dengan langkah-langkah:
[tex]₁∫² dx/(x√(x²-1)) \\ = ₁∫² \: \frac{1}{x \sqrt{ {x}^{2} - 1 } } dx \: (c = 1) \\ = lim _{a \: \to \: {1}^{ + } }(a∫² \frac{1}{x \sqrt{ {x}^{2} - 1} }dx ) \\ = a∫² \frac{1}{x \sqrt{ {x}^{2} - 1} }dx \\ = \int \frac{1}{x \sqrt{ {x}^{2} - {1}^{2} } } dx \\ \\ ingat \\ \int \frac{1}{ x \sqrt{ {x}^{2} - {a}^{2} } } dx \: = \frac{1}{a} \times a\sec( \frac{ |x| }{a} ) \\ \\ maka \\ \frac{1}{1} \times a\sec( \frac{ |x| }{1} ) = a\sec( |x| ) \\ = a\sec( |x| ) | {}^{2} _{a} \\ = a\sec( |2| ) - a \sec( |a| ) \\ = \frac{\pi}{3} - a \sec( |a| ) \\ = \frac{\pi}{3} [/tex]