[tex]q=-\dfrac{3}{4}[/tex]
[tex]|q|=\left|-\dfrac{3}{4}\right|=\dfrac{3}{4} < 1[/tex] a więc suma istnieje
Zatem
[tex]S=\dfrac{a_1}{1-q}[/tex]
[tex]a_1=4\\\\S=\dfrac{4}{1-\left(-\dfrac{3}{4}\right)}=\dfrac{4}{1\dfrac{3}{4}}=\dfrac{4}{\dfrac{7}{4}}=4\cdot\dfrac{4}{7}=\dfrac{16}{7}=2\dfrac{2}{7}[/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
[tex]q=-\dfrac{3}{4}[/tex]
[tex]|q|=\left|-\dfrac{3}{4}\right|=\dfrac{3}{4} < 1[/tex] a więc suma istnieje
Zatem
[tex]S=\dfrac{a_1}{1-q}[/tex]
[tex]a_1=4\\\\S=\dfrac{4}{1-\left(-\dfrac{3}{4}\right)}=\dfrac{4}{1\dfrac{3}{4}}=\dfrac{4}{\dfrac{7}{4}}=4\cdot\dfrac{4}{7}=\dfrac{16}{7}=2\dfrac{2}{7}[/tex]