Untuk menentukan waktu maksimum dari fungsi ini, kita harus mencari titik kritis dari fungsi. Titik kritis dari suatu fungsi dapat ditemukan dengan mengatur turunan pertama dari fungsi tersebut sama dengan nol dan menyelesaikan persamaan tersebut untuk variabel. Dalam kasus ini, fungsi kita adalah f(t) = 5+8t-t². Rumus yang akan kita gunakan adalah f'(t) = 0. Dimana f'(t) adalah turunan pertama dari f(t).
【Deskripsi】
Berikut adalah langkah-langkah pemecahan masalah:
Langkah 1: Tentukan turunan pertama dari fungsi, f'(t).
f'(t) = 8 - 2t
Langkah 2: Setel f'(t) = 0 dan selesaikan untuk t.
8 - 2t = 0
-2t = -8
Setelah kita membagi setiap sisi dengan -2, kita mendapatkan:
t = 4
Jadi, waktu yang diperlukan untuk mencapai reaksi maksimum adalah 4 jam.
Jawaban:
【Tips】
Untuk menentukan waktu maksimum dari fungsi ini, kita harus mencari titik kritis dari fungsi. Titik kritis dari suatu fungsi dapat ditemukan dengan mengatur turunan pertama dari fungsi tersebut sama dengan nol dan menyelesaikan persamaan tersebut untuk variabel. Dalam kasus ini, fungsi kita adalah f(t) = 5+8t-t². Rumus yang akan kita gunakan adalah f'(t) = 0. Dimana f'(t) adalah turunan pertama dari f(t).
【Deskripsi】
Berikut adalah langkah-langkah pemecahan masalah:
Langkah 1: Tentukan turunan pertama dari fungsi, f'(t).
f'(t) = 8 - 2t
Langkah 2: Setel f'(t) = 0 dan selesaikan untuk t.
8 - 2t = 0
-2t = -8
Setelah kita membagi setiap sisi dengan -2, kita mendapatkan:
t = 4
Jadi, waktu yang diperlukan untuk mencapai reaksi maksimum adalah 4 jam.
Jadi jawabannya adalah d. 4 jam.
Penjelasan dengan langkah-langkah:
Semoga Membantu Ya (≧▽≦)