Odpowiedź:
30.
P = [tex]\frac{a^2*\sqrt{3} }{4} = 9\sqrt{3}[/tex]
a² = 9*4 = 36
a = [tex]\sqrt{36} = 6[/tex]
H = [tex]\frac{a*\sqrt{3} }{2} = 3\sqrt{3}[/tex]
x = I BE I
x² = 6² + 3² = 36 + 9 = 45 = 9*5
x = 3√5
zatem tg α = [tex]\frac{H}{x} = \frac{3\sqrt{3} }{3\sqrt{5} } = \frac{\sqrt{3} *\sqrt{5} }{5} = \frac{\sqrt{15} }{5}[/tex]
=====================================
27.
P = [tex]\frac{a^2*\sqrt{3} }{4} = 25\sqrt{3}[/tex]
a² = 25*4 =100
a = [tex]\sqrt{100} = 10[/tex]
3 x + 2 x = 10
5 x = 10
x = 2
I BD I = 2*2 = 4
I ∡ B I = 60°
Z tw. kosinusów
I AD I² = 10² + 4² -2*10*4* cos 60° = 100+ 16 - 80*0,5 = 116 - 40 = 76 = 4*19
I AD I = 2 [tex]\sqrt{19}[/tex]
Obwód ΔABD
L = 10 + 4 + 2[tex]\sqrt{19} = 14 + 2\sqrt{19}[/tex]
===========================
28.
A ( -1, - 6 ) B( 5, 0)
więc
S = ( [tex]\frac{ - 1 + 5}{2} ; \frac{-6 + 0}{2}[/tex] ) = ( 2 ; - 3 )
========================
I AB I² = ( 5 - ( - 1))² + ( 0 - ( - 6))² = 6² + 6² = 36*2
I AB I = [tex]\sqrt{36*2} = 6\sqrt{2}[/tex]
r = 6[tex]\sqrt{2} : 2 = 3\sqrt{2}[/tex]
====================
Szczegółowe wyjaśnienie:
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Odpowiedź:
30.
P = [tex]\frac{a^2*\sqrt{3} }{4} = 9\sqrt{3}[/tex]
a² = 9*4 = 36
a = [tex]\sqrt{36} = 6[/tex]
H = [tex]\frac{a*\sqrt{3} }{2} = 3\sqrt{3}[/tex]
x = I BE I
x² = 6² + 3² = 36 + 9 = 45 = 9*5
x = 3√5
zatem tg α = [tex]\frac{H}{x} = \frac{3\sqrt{3} }{3\sqrt{5} } = \frac{\sqrt{3} *\sqrt{5} }{5} = \frac{\sqrt{15} }{5}[/tex]
=====================================
27.
P = [tex]\frac{a^2*\sqrt{3} }{4} = 25\sqrt{3}[/tex]
a² = 25*4 =100
a = [tex]\sqrt{100} = 10[/tex]
3 x + 2 x = 10
5 x = 10
x = 2
I BD I = 2*2 = 4
I ∡ B I = 60°
Z tw. kosinusów
I AD I² = 10² + 4² -2*10*4* cos 60° = 100+ 16 - 80*0,5 = 116 - 40 = 76 = 4*19
I AD I = 2 [tex]\sqrt{19}[/tex]
Obwód ΔABD
L = 10 + 4 + 2[tex]\sqrt{19} = 14 + 2\sqrt{19}[/tex]
===========================
28.
A ( -1, - 6 ) B( 5, 0)
więc
S = ( [tex]\frac{ - 1 + 5}{2} ; \frac{-6 + 0}{2}[/tex] ) = ( 2 ; - 3 )
========================
I AB I² = ( 5 - ( - 1))² + ( 0 - ( - 6))² = 6² + 6² = 36*2
I AB I = [tex]\sqrt{36*2} = 6\sqrt{2}[/tex]
więc
r = 6[tex]\sqrt{2} : 2 = 3\sqrt{2}[/tex]
====================
Szczegółowe wyjaśnienie: