Odpowiedź:
zad. 3
[tex]f)~~\dfrac{1}{3} log_{5}8x^{3}-2log_{5}y\sqrt{x} +\dfrac{1}{2} =log_{5}\dfrac{2\sqrt{5} }{y^{2}} ,~zal.~~x > 0,~~y > 0[/tex]
[tex]g)~~\dfrac{1}{2} log_{2}x-log_{2}y-2=log_{2}\dfrac{\sqrt{x} }{4y} ,~~zal.~~x > 0,~~y > 0[/tex]
[tex]h)~~\dfrac{1}{2} log4x^{4}+\dfrac{1}{3} log8x^{6}+\dfrac{1}{4} log16x^{8}-3=log\dfrac{x^{6}}{125} ,~~zal.~~x > 0[/tex]
Szczegółowe wyjaśnienie:
Logarytmem liczby b przy podstawie a nazywamy taką liczbę c, że a podniesione do potęgi c daje liczbę b.
[tex]\boxed{~~log_{a}b=c~~\Rightarrow ~~a^{c}=b,~~zal.~a\neq 1,~~a > 0,~~b > 0~~}[/tex]
Korzystamy ze wzorów:
[tex]f)\\\\zal.~~x > 0,~~y > 0\\\\\dfrac{1}{3} log_{5}8x^{3}-2log_{5}y\sqrt{x} +\dfrac{1}{2} =log_{5}(8x^{3})^{\frac{1}{3} }-log_{5}(y\sqrt{x} )^{2}+log_{5}5^{\frac{1}{2} }=log_{5}\sqrt[3]{8x^{3}} -log_{5}y^{2}(\sqrt{x} )^{2} +log_{5}\sqrt{5} =log_{5}2x-log_{5}y^{2}x+log_{5}\sqrt{5} =log_{5}\dfrac{2x}{y^{2}x}+log_{5}\sqrt{5} =log_{5}\dfrac{2}{y^{2}} +log_{5}\sqrt{5} =log_{5}\dfrac{2\sqrt{5} }{y^{2}}[/tex]
[tex]g)\\\\zal.~x > 0,~y > 0\\\\\dfrac{1}{2} log_{2}x-log_{2}y-2=log_{2}(x)^{\frac{1}{2} } -log_{2}y-log_{2}2^2=log_{2}\sqrt{x} -log_{2}y-log_{2}4=log_{2}\dfrac{\sqrt{x} }{y} -log_{2}4=log_{2}\dfrac{\sqrt{x} }{4y}[/tex]
[tex]h)\\\\zal.~~x > 0\\\\\dfrac{1}{2} log4x^{4}+\dfrac{1}{3} log8x^{6}+\dfrac{1}{4} log16x^{8}-3=log\sqrt[2]{4x^{4}} +log\sqrt[3]{8x^{6}} +log\sqrt[4]{16x^{8}} -log10^{3}=log(2x^{2}) +log(2x^{2} )+log(2x^{2} )-log1000=log(2x^{2} \cdot 2x^{2} \cdot 2x^{2} )-log1000=log(8x^{6})-log1000=log\dfrac{8x^{6}}{1000} =log\dfrac{x^{6}}{125}[/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Odpowiedź:
zad. 3
[tex]f)~~\dfrac{1}{3} log_{5}8x^{3}-2log_{5}y\sqrt{x} +\dfrac{1}{2} =log_{5}\dfrac{2\sqrt{5} }{y^{2}} ,~zal.~~x > 0,~~y > 0[/tex]
[tex]g)~~\dfrac{1}{2} log_{2}x-log_{2}y-2=log_{2}\dfrac{\sqrt{x} }{4y} ,~~zal.~~x > 0,~~y > 0[/tex]
[tex]h)~~\dfrac{1}{2} log4x^{4}+\dfrac{1}{3} log8x^{6}+\dfrac{1}{4} log16x^{8}-3=log\dfrac{x^{6}}{125} ,~~zal.~~x > 0[/tex]
Szczegółowe wyjaśnienie:
Logarytmy
Logarytmem liczby b przy podstawie a nazywamy taką liczbę c, że a podniesione do potęgi c daje liczbę b.
[tex]\boxed{~~log_{a}b=c~~\Rightarrow ~~a^{c}=b,~~zal.~a\neq 1,~~a > 0,~~b > 0~~}[/tex]
Korzystamy ze wzorów:
Rozwiązanie:
zad. 3
[tex]f)\\\\zal.~~x > 0,~~y > 0\\\\\dfrac{1}{3} log_{5}8x^{3}-2log_{5}y\sqrt{x} +\dfrac{1}{2} =log_{5}(8x^{3})^{\frac{1}{3} }-log_{5}(y\sqrt{x} )^{2}+log_{5}5^{\frac{1}{2} }=log_{5}\sqrt[3]{8x^{3}} -log_{5}y^{2}(\sqrt{x} )^{2} +log_{5}\sqrt{5} =log_{5}2x-log_{5}y^{2}x+log_{5}\sqrt{5} =log_{5}\dfrac{2x}{y^{2}x}+log_{5}\sqrt{5} =log_{5}\dfrac{2}{y^{2}} +log_{5}\sqrt{5} =log_{5}\dfrac{2\sqrt{5} }{y^{2}}[/tex]
[tex]g)\\\\zal.~x > 0,~y > 0\\\\\dfrac{1}{2} log_{2}x-log_{2}y-2=log_{2}(x)^{\frac{1}{2} } -log_{2}y-log_{2}2^2=log_{2}\sqrt{x} -log_{2}y-log_{2}4=log_{2}\dfrac{\sqrt{x} }{y} -log_{2}4=log_{2}\dfrac{\sqrt{x} }{4y}[/tex]
[tex]h)\\\\zal.~~x > 0\\\\\dfrac{1}{2} log4x^{4}+\dfrac{1}{3} log8x^{6}+\dfrac{1}{4} log16x^{8}-3=log\sqrt[2]{4x^{4}} +log\sqrt[3]{8x^{6}} +log\sqrt[4]{16x^{8}} -log10^{3}=log(2x^{2}) +log(2x^{2} )+log(2x^{2} )-log1000=log(2x^{2} \cdot 2x^{2} \cdot 2x^{2} )-log1000=log(8x^{6})-log1000=log\dfrac{8x^{6}}{1000} =log\dfrac{x^{6}}{125}[/tex]