Odpowiedź:
[tex]\huge\boxed {~~2-\sqrt{2}~ tg\alpha =1\dfrac{1}{2} ~~}[/tex]
Szczegółowe wyjaśnienie:
Korzystamy ze wzorów:
Obliczamy :
[tex]sin\alpha =\dfrac{1}{3} ~~\land~~ sin^{2}\alpha +cos^{2}\alpha =1\\\\cos^{2}\alpha +\left( \dfrac{1}{9} \right)^{2}=1\\\\cos^{2}+\dfrac{1}{9} =1\\\\cos^{2}=1-\dfrac{1}{9} \\\\cos^{2}\alpha =\dfrac{8}{9} ~~\land~~\alpha \in(0^{0};90^{0})\\\\\\~~~~~~~~~~~~~~~~\Downarrow \\\\\huge\boxed {~~cos\alpha =\dfrac{2\sqrt{2} }{3} ~~}[/tex]
[tex]tg\alpha =\dfrac{sin\alpha }{cos\alpha } ~~\land~~sin\alpha =\dfrac{1}{3} ~~\land~~cos\alpha =\dfrac{2\sqrt{2} }{3} \\\\\\tg\alpha =\dfrac{\frac{1}{3} }{\frac{2\sqrt{2} }{3} } \\\\tg\alpha =\dfrac{1}{3} \div \dfrac{2\sqrt{2} }{3} \\\\tg\alpha =\dfrac{1}{3\!\!\!\!\diagup_1} \cdot \dfrac{3\!\!\!\!\diagup^1}{2\sqrt{2} } \\\\\\tg\alpha =\dfrac{1}{2\sqrt{2} } \cdot \dfrac{\sqrt{2} }{\sqrt{2} } \\\\\\\huge\boxed{~~tg\alpha =\dfrac{\sqrt{2} }{4} ~~}[/tex]
[tex]2-\sqrt{2}~ tg\alpha =?~~\land ~~ty\alpha =\dfrac{\sqrt{2} }{4} \\\\2-\sqrt{2} \cdot \dfrac{\sqrt{2} }{4}=2-\dfrac{\sqrt{4} }{4} =2-\dfrac{2}{4}=2-\dfrac{1}{2} =1\dfrac{1}{2} \\\\\huge\boxed {~~2-\sqrt{2}~ tg\alpha =1\dfrac{1}{2} ~~}[/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Odpowiedź:
[tex]\huge\boxed {~~2-\sqrt{2}~ tg\alpha =1\dfrac{1}{2} ~~}[/tex]
Szczegółowe wyjaśnienie:
Korzystamy ze wzorów:
Obliczamy :
[tex]sin\alpha =\dfrac{1}{3} ~~\land~~ sin^{2}\alpha +cos^{2}\alpha =1\\\\cos^{2}\alpha +\left( \dfrac{1}{9} \right)^{2}=1\\\\cos^{2}+\dfrac{1}{9} =1\\\\cos^{2}=1-\dfrac{1}{9} \\\\cos^{2}\alpha =\dfrac{8}{9} ~~\land~~\alpha \in(0^{0};90^{0})\\\\\\~~~~~~~~~~~~~~~~\Downarrow \\\\\huge\boxed {~~cos\alpha =\dfrac{2\sqrt{2} }{3} ~~}[/tex]
[tex]tg\alpha =\dfrac{sin\alpha }{cos\alpha } ~~\land~~sin\alpha =\dfrac{1}{3} ~~\land~~cos\alpha =\dfrac{2\sqrt{2} }{3} \\\\\\tg\alpha =\dfrac{\frac{1}{3} }{\frac{2\sqrt{2} }{3} } \\\\tg\alpha =\dfrac{1}{3} \div \dfrac{2\sqrt{2} }{3} \\\\tg\alpha =\dfrac{1}{3\!\!\!\!\diagup_1} \cdot \dfrac{3\!\!\!\!\diagup^1}{2\sqrt{2} } \\\\\\tg\alpha =\dfrac{1}{2\sqrt{2} } \cdot \dfrac{\sqrt{2} }{\sqrt{2} } \\\\\\\huge\boxed{~~tg\alpha =\dfrac{\sqrt{2} }{4} ~~}[/tex]
[tex]2-\sqrt{2}~ tg\alpha =?~~\land ~~ty\alpha =\dfrac{\sqrt{2} }{4} \\\\2-\sqrt{2} \cdot \dfrac{\sqrt{2} }{4}=2-\dfrac{\sqrt{4} }{4} =2-\dfrac{2}{4}=2-\dfrac{1}{2} =1\dfrac{1}{2} \\\\\huge\boxed {~~2-\sqrt{2}~ tg\alpha =1\dfrac{1}{2} ~~}[/tex]