Respuesta: Log (base 5) [ 36 ]
Explicación paso a paso: Se sabe que :
Log (base B) N^(k) = k Log(base B) N
Log M - Log N = Log (M/N)
Log M + Log N = Log (M . N)
Entonces:
2 log5 3 - 1/3 log5 64 + log5 16
= Log (3²) - Log (∛64) + Log 16
= Log [3² / (∛64)] + Log 16
= Log {[3² / (∛64)] . 16}
= Log [ 144 / (∛64) ]
= Log [ 144 / 4 ]
= Log [ 36 ]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Respuesta: Log (base 5) [ 36 ]
Explicación paso a paso: Se sabe que :
Log (base B) N^(k) = k Log(base B) N
Log M - Log N = Log (M/N)
Log M + Log N = Log (M . N)
Entonces:
2 log5 3 - 1/3 log5 64 + log5 16
= Log (3²) - Log (∛64) + Log 16
= Log [3² / (∛64)] + Log 16
= Log {[3² / (∛64)] . 16}
= Log [ 144 / (∛64) ]
= Log [ 144 / 4 ]
= Log [ 36 ]