El valor de la Tan(y + z) es:
Tan(y + z) = 1
Si Tan(x + y) = 1/2; Tan(z - x) = 1/3;
Aplicar trigonometria para resolver el problema.
Tan(α) = Cat. Op/Cat. Ady
Aplicar inversa;
α = Tan⁻¹(Cat. Op/Cat. Ady)
Tan(x + y) = 1/2
(x + y) = Tan⁻¹(1/2)
Tan(z - x) = 1/3
(z - x) = Tan⁻¹(1/3)
Despejar x;
x = z - Tan⁻¹(1/3)
Sustituir;
z - Tan⁻¹(1/3) + y = Tan⁻¹(1/2)
y + z = Tan⁻¹(1/2) + Tan⁻¹(1/3)
y + z = 45°
Tan(45°) = 1
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
El valor de la Tan(y + z) es:
Tan(y + z) = 1
Si Tan(x + y) = 1/2; Tan(z - x) = 1/3;
Aplicar trigonometria para resolver el problema.
Tan(α) = Cat. Op/Cat. Ady
Aplicar inversa;
α = Tan⁻¹(Cat. Op/Cat. Ady)
Tan(x + y) = 1/2
Aplicar inversa;
(x + y) = Tan⁻¹(1/2)
Tan(z - x) = 1/3
Aplicar inversa;
(z - x) = Tan⁻¹(1/3)
Despejar x;
x = z - Tan⁻¹(1/3)
Sustituir;
z - Tan⁻¹(1/3) + y = Tan⁻¹(1/2)
y + z = Tan⁻¹(1/2) + Tan⁻¹(1/3)
y + z = 45°
Tan(45°) = 1
Tan(y + z) = 1