Odpowiedź:
1.
a)
a₁ + a₃ = 0
a₂ + a₄ = - 8
a₁ + a₁ + 2r = 0
a₁ + r + a₁ + 3r = - 8
2a₁ + 2r = 0 ⇒ 2a₁ = - 2r
2a₁ + 4r = - 8
- 2r + 4r = - 8
2r = - 8
r = - 8/2 = - 4
2a₁ = - 2r = - 2 * ( - 4) = 8
a₁ = 8/2 = 4
an = a₁ + (n - 1) * r = 4 + (n - 1) * ( - 4) = 4 - 4n + 4 = - 4n + 8
b)
a₁ + a₄ = 12
a₂ + a₄ + a₆ = 27
a₁ + a₁ + 3r = 12
a₁ + r + a₁ + 3r + a₁ + 5r = 27
2a₁ + 3r = 12
3a₁ + 9r = 27 | : 3
a₁ + 3r = 9
Odejmujemy równania
2a₁ - a₁ + 3r - 3r = 12 - 9
a₁ = 3
3 + 3r = 9
3r = 9 - 3 = 6
r = 6/3 = 2
an = a₁ + (n - 1) * r = 9 + (n - 1) * 2 = 9 + 2n - 2 = 2n + 7
c)
a₁ * a₂ = 5
a₁ + a₃ = - 4
a₁(a₁ + r) = 5
a₁ + a₁ + 2r = - 4
a₁² + a₁r = 5
2a₁ + 2r = - 4 | : 2
a₁ + r = - 2 ⇒ a₁ = 5 - a₁r
(5 - a₁r)² + a₁r = 5
25 - 10a₁r + a₁²r² + a₁r = 5
(a₁r)² - 9a₁r + 25 - 5 = 0
za a₁r wstawiamy z
z² - 9z + 20 = 0
Δ = (- 9)² - 4 * 1 * 20 = 81 - 80 = 1
√Δ = √1 = 1
z₁ = ( 9 - 1)/2 = 8/2 = 4
z₂ = (9 + 1)/2 = 10/2 = 5
a₁r₁ = 4 ∨ a₁r₁ = 5
dla a₁r = 4
a₁ + a₁r = 5
a₁ + 4 = 5
a₁ = 5 - 4 = 1
dla a₁r = 5
a₁ + 5 = 5
a₁ = 5 - 5 = 0
Dla a₁ = 1
a₁r₁ = 4
r₁ = 4
Dla a₁ = 0
a₁r = 5
0 * r = 5
0 ≠ 5 równanie sprzeczne , więc :
a₁ = 1 , r = 4
an = a₁ + (n - 1) * r = 1 + (n - 1) * 4 = 1 + 4n - 4 = 4n - 3
2.
a₁ = x + 1
a₂ = 4x - 1
a₃ = 3x + 5
a₃ - a₂ = a₂ - a₁
3x + 5 - 4x + 1 = 4x - 1 - x - 1
- x + 6 = 3x - 2
- x - 3x = - 2 - 6
- 4x = - 8
4x = 8
x = 8/4 = 2
a₁ = - x
a₂ = 3x + 1
a₃ = - 6 - x
- 6 - x - 3x - 1 = 3x + 1 + x
- 4x - 7 = 4x + 1
- 4x - 4x = 1 + 7
- 8x = 8
8x = - 8
x = - 8/8 = - 1
a₁ = x + 2
a₂ = x²
a₃ = 4x
4x - x² = x² - x - 3
- x² - x² + 4x + x + 3 = 0
- 2x² + 5x + 3 = 0
a = - 2 , b = 5 , c = 3
Δ = b² - 4ac = 5² - 4 * (- 2) * 3 = 25 + 24 = 49
√Δ = √49 = 7
x₁ = ( - b - √Δ)/2a = (- 5 - 7)/(- 4) = - 12/(- 4) = 3
x₂ = ( - b + √Δ)/2a = ( - 5 + 7)/(- 4) = - 2/4 = - 1/2
d)
a₁ = x² + 2
a₂ = (x + 1)²
a₃ = 4x₂ + 1
4x² + 1 - (x + 1)² = (x + 1)² - x² - 2
4x² + 1 - (x² + 2x + 1) = x² + 2x + 1 - x² - 2
4x² + 1 - x² - 2x - 1 = 2x - 1
3x² - 2x = 2x - 1
3x² - 2x - 2x + 1 = 0
3x² - 4x + 1 = 0
a = 3 , b = - 4 , c = 1
Δ = b² - 4ac = (- 4)² - 4 * 3 * 1 = 16 - 12 = 4
√Δ = √4 = 2
x₁ = ( - b - √Δ)/2a = ( 4 - 2)/6 = 2/6 = 1/3
x₂ = (- b + √Δ)/2a = (4 + 2)/6 = 6/6 = 1
3.
a₂ = a₁ + r = - 7
a₈ = a₁ + 7r = 11
a₁ + r = - 7
a₁ + 7r = 11
odejmujemy równania
a₁ - a₁ + r - 7r = - 7 - 11
- 6r = - 18
6r = 18
r = 18/6 = 3
a₁ + 3 = - 7
a₁ = - 7 - 3 = - 10
a₉ = a₁ + 8r = 60
a₂₁ = a₁ + 20r = 0
a₁ + 8r = 60
a₁ + 20r = 0
a₁ - a₁ + 8r - 20r = 60 - 0
- 12r = 60
12r = - 60
r = - 60/12 = - 5
a₁ + 20 * ( - 5) = 0
a₁ - 100 = 0
a₁ = 100
a₄ = a₁ + 3r = 1 2/3
a₁₁ = a₁ + 10r = 4
a₁+ 3r = 1 2/3
a₁ + 10r = 4
a₁ - a₁ + 3r - 10r = 1 2/3 - 4
- 7r = 1 2/3 - 3 3/3 = - 2 1/3
7r = 2 1/3
r = 2 1/3 : 7 = 7/3 * 1/7 = 1/3
a₁ + 10 * 1/3 = 4
a₁ + 10/3 = 4
a₁ = 4 : 10/3 = 4 * 3/10 = 12/10 = 1 2/10 = 1 1/5
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Odpowiedź:
1.
a)
a₁ + a₃ = 0
a₂ + a₄ = - 8
a₁ + a₁ + 2r = 0
a₁ + r + a₁ + 3r = - 8
2a₁ + 2r = 0 ⇒ 2a₁ = - 2r
2a₁ + 4r = - 8
- 2r + 4r = - 8
2r = - 8
r = - 8/2 = - 4
2a₁ = - 2r = - 2 * ( - 4) = 8
a₁ = 8/2 = 4
an = a₁ + (n - 1) * r = 4 + (n - 1) * ( - 4) = 4 - 4n + 4 = - 4n + 8
b)
a₁ + a₄ = 12
a₂ + a₄ + a₆ = 27
a₁ + a₁ + 3r = 12
a₁ + r + a₁ + 3r + a₁ + 5r = 27
2a₁ + 3r = 12
3a₁ + 9r = 27 | : 3
2a₁ + 3r = 12
a₁ + 3r = 9
Odejmujemy równania
2a₁ - a₁ + 3r - 3r = 12 - 9
a₁ = 3
a₁ + 3r = 9
3 + 3r = 9
3r = 9 - 3 = 6
r = 6/3 = 2
an = a₁ + (n - 1) * r = 9 + (n - 1) * 2 = 9 + 2n - 2 = 2n + 7
c)
a₁ * a₂ = 5
a₁ + a₃ = - 4
a₁(a₁ + r) = 5
a₁ + a₁ + 2r = - 4
a₁² + a₁r = 5
2a₁ + 2r = - 4 | : 2
a₁² + a₁r = 5
a₁ + r = - 2 ⇒ a₁ = 5 - a₁r
(5 - a₁r)² + a₁r = 5
25 - 10a₁r + a₁²r² + a₁r = 5
(a₁r)² - 9a₁r + 25 - 5 = 0
za a₁r wstawiamy z
z² - 9z + 20 = 0
Δ = (- 9)² - 4 * 1 * 20 = 81 - 80 = 1
√Δ = √1 = 1
z₁ = ( 9 - 1)/2 = 8/2 = 4
z₂ = (9 + 1)/2 = 10/2 = 5
a₁r₁ = 4 ∨ a₁r₁ = 5
dla a₁r = 4
a₁ + a₁r = 5
a₁ + 4 = 5
a₁ = 5 - 4 = 1
dla a₁r = 5
a₁ + a₁r = 5
a₁ + 5 = 5
a₁ = 5 - 5 = 0
Dla a₁ = 1
a₁r₁ = 4
r₁ = 4
Dla a₁ = 0
a₁r = 5
0 * r = 5
0 ≠ 5 równanie sprzeczne , więc :
a₁ = 1 , r = 4
an = a₁ + (n - 1) * r = 1 + (n - 1) * 4 = 1 + 4n - 4 = 4n - 3
2.
a)
a₁ = x + 1
a₂ = 4x - 1
a₃ = 3x + 5
a₃ - a₂ = a₂ - a₁
3x + 5 - 4x + 1 = 4x - 1 - x - 1
- x + 6 = 3x - 2
- x - 3x = - 2 - 6
- 4x = - 8
4x = 8
x = 8/4 = 2
b)
a₁ = - x
a₂ = 3x + 1
a₃ = - 6 - x
a₃ - a₂ = a₂ - a₁
- 6 - x - 3x - 1 = 3x + 1 + x
- 4x - 7 = 4x + 1
- 4x - 4x = 1 + 7
- 8x = 8
8x = - 8
x = - 8/8 = - 1
c)
a₁ = x + 2
a₂ = x²
a₃ = 4x
a₃ - a₂ = a₂ - a₁
4x - x² = x² - x - 3
- x² - x² + 4x + x + 3 = 0
- 2x² + 5x + 3 = 0
a = - 2 , b = 5 , c = 3
Δ = b² - 4ac = 5² - 4 * (- 2) * 3 = 25 + 24 = 49
√Δ = √49 = 7
x₁ = ( - b - √Δ)/2a = (- 5 - 7)/(- 4) = - 12/(- 4) = 3
x₂ = ( - b + √Δ)/2a = ( - 5 + 7)/(- 4) = - 2/4 = - 1/2
d)
a₁ = x² + 2
a₂ = (x + 1)²
a₃ = 4x₂ + 1
a₃ - a₂ = a₂ - a₁
4x² + 1 - (x + 1)² = (x + 1)² - x² - 2
4x² + 1 - (x² + 2x + 1) = x² + 2x + 1 - x² - 2
4x² + 1 - x² - 2x - 1 = 2x - 1
3x² - 2x = 2x - 1
3x² - 2x - 2x + 1 = 0
3x² - 4x + 1 = 0
a = 3 , b = - 4 , c = 1
Δ = b² - 4ac = (- 4)² - 4 * 3 * 1 = 16 - 12 = 4
√Δ = √4 = 2
x₁ = ( - b - √Δ)/2a = ( 4 - 2)/6 = 2/6 = 1/3
x₂ = (- b + √Δ)/2a = (4 + 2)/6 = 6/6 = 1
3.
a)
a₂ = a₁ + r = - 7
a₈ = a₁ + 7r = 11
a₁ + r = - 7
a₁ + 7r = 11
odejmujemy równania
a₁ - a₁ + r - 7r = - 7 - 11
- 6r = - 18
6r = 18
r = 18/6 = 3
a₁ + r = - 7
a₁ + 3 = - 7
a₁ = - 7 - 3 = - 10
b)
a₉ = a₁ + 8r = 60
a₂₁ = a₁ + 20r = 0
a₁ + 8r = 60
a₁ + 20r = 0
odejmujemy równania
a₁ - a₁ + 8r - 20r = 60 - 0
- 12r = 60
12r = - 60
r = - 60/12 = - 5
a₁ + 20r = 0
a₁ + 20 * ( - 5) = 0
a₁ - 100 = 0
a₁ = 100
c)
a₄ = a₁ + 3r = 1 2/3
a₁₁ = a₁ + 10r = 4
a₁+ 3r = 1 2/3
a₁ + 10r = 4
odejmujemy równania
a₁ - a₁ + 3r - 10r = 1 2/3 - 4
- 7r = 1 2/3 - 3 3/3 = - 2 1/3
7r = 2 1/3
r = 2 1/3 : 7 = 7/3 * 1/7 = 1/3
a₁ + 10r = 4
a₁ + 10 * 1/3 = 4
a₁ + 10/3 = 4
a₁ = 4 : 10/3 = 4 * 3/10 = 12/10 = 1 2/10 = 1 1/5