[tex]Dane:\\E_{c} = 5 \ J = \frac{1}{2}kA^{2}\\x = \frac{1}{3}A\\Szukane:\\E_{k} = ?[/tex]
Rozwiązanie
[tex]\frac{1}{2}kA^{2} = 5 \ J \ \ \ |\cdot 2\\\\\underline{kA^{2} = 10 \ J}\\\\E_{c} = E_{k} + E_{p}\\\\E_{k} = E_{c} - E_{p}\\\\E_{p} = \frac{1}{2}kx^{2}}\\\\E_{p} =\frac{1}{2}k\cdot(\frac{1}{3}A)^{2}}\\\\E_{p} = \frac{1}{18}kA^{2} \\\\ale \ \ kA^{2} = 10 \ J, \ zatem\\\\E_{p} = \frac{1}{18}\cdot 10 \ J\\\\\underline{E_{p} = 0,5556 \ J}[/tex]
[tex]E_{k} = 5 \ J - 0,556 \ J\\\\\boxed{E_{k} = 4,444 \ J}[/tex]
Odp. Energia kinetyczna tego ciała w chwili, gdy jego wychylenie od punktu równowagi wynoi x = A/3 ma wartość 4,444 J.
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
[tex]Dane:\\E_{c} = 5 \ J = \frac{1}{2}kA^{2}\\x = \frac{1}{3}A\\Szukane:\\E_{k} = ?[/tex]
Rozwiązanie
[tex]\frac{1}{2}kA^{2} = 5 \ J \ \ \ |\cdot 2\\\\\underline{kA^{2} = 10 \ J}\\\\E_{c} = E_{k} + E_{p}\\\\E_{k} = E_{c} - E_{p}\\\\E_{p} = \frac{1}{2}kx^{2}}\\\\E_{p} =\frac{1}{2}k\cdot(\frac{1}{3}A)^{2}}\\\\E_{p} = \frac{1}{18}kA^{2} \\\\ale \ \ kA^{2} = 10 \ J, \ zatem\\\\E_{p} = \frac{1}{18}\cdot 10 \ J\\\\\underline{E_{p} = 0,5556 \ J}[/tex]
[tex]E_{k} = 5 \ J - 0,556 \ J\\\\\boxed{E_{k} = 4,444 \ J}[/tex]
Odp. Energia kinetyczna tego ciała w chwili, gdy jego wychylenie od punktu równowagi wynoi x = A/3 ma wartość 4,444 J.