[tex]\dfrac{b+c}{2} > \dfrac{a+b+c}{3}\quad|\cdot6[/tex]
[tex]3(b+c) > 2(a+b+c)[/tex]
[tex]3b+3c > 2a+2b+2c[/tex]
[tex]3b+3c-2b-2c > 2a[/tex]
[tex]b+c > 2a[/tex]
[tex]b+c > a+a[/tex]
[tex]b > a\quad\wedge\quad c > a[/tex]
Odpowiedź:
Szczegółowe wyjaśnienie:
Dane z treści zadania:
Uzasadnienie warunku: [tex]\huge\boxed{~~\dfrac{b+c}{2} ~ > ~\dfrac{a+b+c}{3}~~}[/tex]
[tex]\dfrac{b+c}{2} ~ > ~\dfrac{a+b+c}{3} ~~\mid \cdot 6\\\\3(b+c)~ > ~2(a+b+c)\\\\3b+3c~ > ~2a+2b+2c~~\mid -(2b+2c)\\\\b+c~ > ~2a\\\\b+c~ > ~a+a~~~~\Rightarrow~~jest~~to~~prawda:~~b~ > ~a~~\land~~c~ > ~~a\\\\cbdu.[/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
[tex]\dfrac{b+c}{2} > \dfrac{a+b+c}{3}\quad|\cdot6[/tex]
[tex]3(b+c) > 2(a+b+c)[/tex]
[tex]3b+3c > 2a+2b+2c[/tex]
[tex]3b+3c-2b-2c > 2a[/tex]
[tex]b+c > 2a[/tex]
[tex]b+c > a+a[/tex]
[tex]b > a\quad\wedge\quad c > a[/tex]
Verified answer
Odpowiedź:
Uzasadnianie poniżej.
Szczegółowe wyjaśnienie:
Dane z treści zadania:
Uzasadnienie warunku: [tex]\huge\boxed{~~\dfrac{b+c}{2} ~ > ~\dfrac{a+b+c}{3}~~}[/tex]
[tex]\dfrac{b+c}{2} ~ > ~\dfrac{a+b+c}{3} ~~\mid \cdot 6\\\\3(b+c)~ > ~2(a+b+c)\\\\3b+3c~ > ~2a+2b+2c~~\mid -(2b+2c)\\\\b+c~ > ~2a\\\\b+c~ > ~a+a~~~~\Rightarrow~~jest~~to~~prawda:~~b~ > ~a~~\land~~c~ > ~~a\\\\cbdu.[/tex]