Odpowiedź w załączniku
a)
[tex]3x^{2}-6 > 0\\\\M. \ zerowe:\\\\3x^{2}-6 = 0 \ \ \ /:3\\\\x^{2}-2 = 0\\\\(x+\sqrt{2})(x-\sqrt{2}) = 0\\\\(x+\sqrt{2}) = 0 \ \vee \ (x-\sqrt{2}) = 0\\\\x = -\sqrt{2} \ \vee \ x = \sqrt{2}[/tex]
a > 0, to parabola zwrócona jest ramionami do góry; wartości > 0 znajdują się nad osią OX
[tex]\boxed{x \in (-\infty;-\sqrt{2}) \ \cup \ (\sqrt{2};+\infty)}[/tex]
b)
[tex]f(x) = \frac{(x^{2}-9)(2x+5)}{2x-6}\\\\\\\underline{Dziedzina}\\2x-6 \neq 0 \ \ \ /:2\\\\x - 3 \neq 0\\\\x \neq 3\\\\D = R \setminus\{3\}[/tex]
[tex](x^{2}-9)(2x+5) = 0\\\\(x+3)(x-3)(2x+5) = 0\\\\x+3 = 0 \ \ \vee \ \ x - 3 = 0 \ \ \vee \ \ 2x+5 = 0\\\\x = -3 \ \ \vee \ \ x = 3 \ \notin D \ \ \vee \ 2x = -5\\\\x = -3 \ \ \vee \ \ x = -2\frac{1}{2}\\\\\boxed{x \in\{-3, -2\frac{1}{2}\}}[/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Verified answer
Odpowiedź w załączniku
a)
[tex]3x^{2}-6 > 0\\\\M. \ zerowe:\\\\3x^{2}-6 = 0 \ \ \ /:3\\\\x^{2}-2 = 0\\\\(x+\sqrt{2})(x-\sqrt{2}) = 0\\\\(x+\sqrt{2}) = 0 \ \vee \ (x-\sqrt{2}) = 0\\\\x = -\sqrt{2} \ \vee \ x = \sqrt{2}[/tex]
a > 0, to parabola zwrócona jest ramionami do góry; wartości > 0 znajdują się nad osią OX
[tex]\boxed{x \in (-\infty;-\sqrt{2}) \ \cup \ (\sqrt{2};+\infty)}[/tex]
b)
[tex]f(x) = \frac{(x^{2}-9)(2x+5)}{2x-6}\\\\\\\underline{Dziedzina}\\2x-6 \neq 0 \ \ \ /:2\\\\x - 3 \neq 0\\\\x \neq 3\\\\D = R \setminus\{3\}[/tex]
[tex](x^{2}-9)(2x+5) = 0\\\\(x+3)(x-3)(2x+5) = 0\\\\x+3 = 0 \ \ \vee \ \ x - 3 = 0 \ \ \vee \ \ 2x+5 = 0\\\\x = -3 \ \ \vee \ \ x = 3 \ \notin D \ \ \vee \ 2x = -5\\\\x = -3 \ \ \vee \ \ x = -2\frac{1}{2}\\\\\boxed{x \in\{-3, -2\frac{1}{2}\}}[/tex]