Odpowiedź:
a )
A( -2, 4) B( 1,- 1 ) y = f ( x) = a x + b
y = a x + b
więc
4 = -2 a + b
- 1 = a + b ⇒ b= - 1 - a
zatem
4 = - 2 a + ( - 1 - a)
4 = - 3 a - 1
3 a = - 4 - 1 = - 5 / : 3
a = - [tex]\frac{5}{3}[/tex] oraz b = - 1 - a = - 1 - ( - [tex]\frac{5}{3}[/tex]) = - 1 + [tex]\frac{5}{3} = \frac{2}{3}[/tex]
Odp. y = f( x ) = - [tex]\frac{5}{3}[/tex] x + [tex]\frac{2}{3}[/tex]
=======================
II sposób:
a = [tex]\frac{y_2 - y_1}{x_2 - x_1} =\frac{- 1 - 4}{1 - (-2)} = - \frac{5}{3}[/tex]
y = a x + b = - [tex]\frac{5}{3}[/tex] x + b B( 1, - 1)
- 1 = - [tex]\frac{5}{3} *1 +[/tex] b
- 1 = - [tex]\frac{5}{3} +[/tex] b
b = - 1 + [tex]\frac{5}{3} = - \frac{3}{3} + \frac{5}{3} = \frac{2}{3}[/tex]
Odp. y = f( x) = - [tex]\frac{5}{3}[/tex] x + [tex]\frac{2}{3}[/tex]
========================
b )
g ( x) = - [tex]\frac{1}{2}[/tex] x + 1 P( 4, 2)
Warunek równoległości prostych
[tex]a_ 1 = a_ 2[/tex] czyli [tex]a_2 = - \frac{1}{2}[/tex]
f( x) = - [tex]\frac{1}{2}[/tex] x + b oraz P ( 4, 2)
więc po podstawieniu mamy
2 = - [tex]\frac{1}{2}[/tex]*4 + b
2 = - 2 + b
b = 2 + 2 = 4
Odp. f( x) = - [tex]\frac{1}{2}[/tex] x + 4
Szczegółowe wyjaśnienie:
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Odpowiedź:
a )
A( -2, 4) B( 1,- 1 ) y = f ( x) = a x + b
y = a x + b
więc
4 = -2 a + b
- 1 = a + b ⇒ b= - 1 - a
zatem
4 = - 2 a + ( - 1 - a)
4 = - 3 a - 1
3 a = - 4 - 1 = - 5 / : 3
a = - [tex]\frac{5}{3}[/tex] oraz b = - 1 - a = - 1 - ( - [tex]\frac{5}{3}[/tex]) = - 1 + [tex]\frac{5}{3} = \frac{2}{3}[/tex]
Odp. y = f( x ) = - [tex]\frac{5}{3}[/tex] x + [tex]\frac{2}{3}[/tex]
=======================
II sposób:
a = [tex]\frac{y_2 - y_1}{x_2 - x_1} =\frac{- 1 - 4}{1 - (-2)} = - \frac{5}{3}[/tex]
y = a x + b = - [tex]\frac{5}{3}[/tex] x + b B( 1, - 1)
więc
- 1 = - [tex]\frac{5}{3} *1 +[/tex] b
- 1 = - [tex]\frac{5}{3} +[/tex] b
b = - 1 + [tex]\frac{5}{3} = - \frac{3}{3} + \frac{5}{3} = \frac{2}{3}[/tex]
Odp. y = f( x) = - [tex]\frac{5}{3}[/tex] x + [tex]\frac{2}{3}[/tex]
========================
b )
g ( x) = - [tex]\frac{1}{2}[/tex] x + 1 P( 4, 2)
Warunek równoległości prostych
[tex]a_ 1 = a_ 2[/tex] czyli [tex]a_2 = - \frac{1}{2}[/tex]
f( x) = - [tex]\frac{1}{2}[/tex] x + b oraz P ( 4, 2)
więc po podstawieniu mamy
2 = - [tex]\frac{1}{2}[/tex]*4 + b
2 = - 2 + b
b = 2 + 2 = 4
Odp. f( x) = - [tex]\frac{1}{2}[/tex] x + 4
=======================
Szczegółowe wyjaśnienie: