a. Tentukan [tex] (f\circ g)(x) [/tex]
[tex] \begin{align} (f\circ g)(x) &= f(g(x)) \\ &= f(x^2+1) \\ &= \dfrac{1}{2(x^2+1)-1} \\ &= \dfrac{1}{2x^2+1} \end{align} [/tex]
b. Tentukan [tex] (g\circ f)(x) [/tex]
[tex] \begin{align} (g\circ f)(x) &= g(f(x)) \\ &= f(x^2+1) \\ &= \left(\dfrac{1}{2x-1}\right)^2+1 \\ &= \dfrac{1}{(2x-1)^2}+\dfrac{(2x-1)^2}{(2x-1)^2}\\ &= \dfrac{1+(2x-1)^2}{(2x-1)^2} \\ &= \dfrac{1+4x^2-4x+1}{4x^2-4x+1} \\ &= \dfrac{4x^2-4x+2}{4x^2-4x+1} \end{align} [/tex]
c. Tentukan [tex] (f\circ g)(2) [/tex]
[tex] \begin{align} (f\circ g)(2) &= \dfrac{1}{2(2)^2+1} \\ &= \dfrac{1}{2(4)+1} \\ &= \dfrac{1}{9}\end{align} [/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
a. Tentukan [tex] (f\circ g)(x) [/tex]
[tex] \begin{align} (f\circ g)(x) &= f(g(x)) \\ &= f(x^2+1) \\ &= \dfrac{1}{2(x^2+1)-1} \\ &= \dfrac{1}{2x^2+1} \end{align} [/tex]
b. Tentukan [tex] (g\circ f)(x) [/tex]
[tex] \begin{align} (g\circ f)(x) &= g(f(x)) \\ &= f(x^2+1) \\ &= \left(\dfrac{1}{2x-1}\right)^2+1 \\ &= \dfrac{1}{(2x-1)^2}+\dfrac{(2x-1)^2}{(2x-1)^2}\\ &= \dfrac{1+(2x-1)^2}{(2x-1)^2} \\ &= \dfrac{1+4x^2-4x+1}{4x^2-4x+1} \\ &= \dfrac{4x^2-4x+2}{4x^2-4x+1} \end{align} [/tex]
c. Tentukan [tex] (f\circ g)(2) [/tex]
[tex] \begin{align} (f\circ g)(2) &= \dfrac{1}{2(2)^2+1} \\ &= \dfrac{1}{2(4)+1} \\ &= \dfrac{1}{9}\end{align} [/tex]
DON'T FORGET TO FOLLOW FOR MORE