Nilai dari 2α + 2β + (αβ)²⁰²² adalah 2 (D).
ㅤ
Pembahasan
Diketahui:
ㅤㅤ
Ditanyakan:
Nilai dari 2α + 2β + (αβ)²⁰²² = __?
Penyelesaian:
» Menentukan akar-akar persamaan
ㅤ[tex] \sf x = \dfrac{ - b \pm \sqrt{ {b}^{2} - 4ac} }{2a} [/tex]
ㅤ[tex] \sf x = \dfrac{ - ( - 1) \pm \sqrt{ {( - 1)}^{2} - 4(2)( - 2)} }{2(2)} [/tex]
ㅤ[tex] \sf x = \dfrac{ 1 \pm \sqrt{ 1 + 16} }{4} [/tex]
ㅤ[tex] \sf x = \dfrac{ 1 \pm \sqrt{ 17} }{4} [/tex]
ㅤSehingga diperoleh:
ㅤ[tex] \sf \bull \: \: \alpha = \dfrac{ 1 + \sqrt{ 17} }{4} [/tex]
ㅤ[tex] \sf \bull \: \: \beta = \dfrac{ 1 - \sqrt{ 17} }{4} [/tex]
Dengan demikian:
[tex] \sf 2 \alpha \: + \: 2 \beta \: + \: ( \alpha \beta )^{2022} \:[/tex]
[tex] \sf \small = 2 \: ( \dfrac{ 1 + \sqrt{ 17} }{4} ) + 2 \: (\dfrac{ 1 - \sqrt{ 17} }{4})+ (\dfrac{ 1 + \sqrt{ 17} }{4} \: . \: \dfrac{ 1 - \sqrt{ 17} }{4})^{2022} \:[/tex]
[tex] \sf = \dfrac{ 1 + \sqrt{ 17} }{2} + \dfrac{ 1 - \sqrt{ 17} }{2}+ (\dfrac{ (1 + \sqrt{ 17} )(1 - \sqrt{17} )}{4 \times 4})^{2022} \:[/tex]
[tex] \sf = \dfrac{ 1 + \sqrt{ 17} }{2} + \dfrac{ 1 - \sqrt{ 17} }{2}+ (\dfrac{ 1 - 17}{16})^{2022} \:[/tex]
[tex] \sf = \dfrac{ 1 + \sqrt{ 17} }{2} + \dfrac{ 1 - \sqrt{ 17} }{2}+ (\dfrac{ - 16}{16})^{2022} \:[/tex]
[tex] \sf = \dfrac{ 1 + \sqrt{ 17} }{2} + \dfrac{ 1 - \sqrt{ 17} }{2}+ ( - 1)^{2022} \:[/tex]
[tex] \sf = \dfrac{ 1 + \sqrt{ 17} }{2} + \dfrac{ 1 - \sqrt{ 17} }{2}+ 1[/tex]
[tex] \sf = \dfrac{ 1 + \sqrt{ 17} + 1 - \sqrt{17} + 2 }{2} [/tex]
[tex] \sf = \dfrac{ 4 }{2} [/tex]
[tex] \sf =2[/tex]
Jadi, nilai dari 2α + 2β + (αβ)²⁰²² adalah 2 (D).
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
Nilai dari 2α + 2β + (αβ)²⁰²² adalah 2 (D).
ㅤ
Pembahasan
Diketahui:
ㅤㅤ
Ditanyakan:
Nilai dari 2α + 2β + (αβ)²⁰²² = __?
ㅤㅤ
Penyelesaian:
» Menentukan akar-akar persamaan
ㅤ[tex] \sf x = \dfrac{ - b \pm \sqrt{ {b}^{2} - 4ac} }{2a} [/tex]
ㅤ[tex] \sf x = \dfrac{ - ( - 1) \pm \sqrt{ {( - 1)}^{2} - 4(2)( - 2)} }{2(2)} [/tex]
ㅤ[tex] \sf x = \dfrac{ 1 \pm \sqrt{ 1 + 16} }{4} [/tex]
ㅤ[tex] \sf x = \dfrac{ 1 \pm \sqrt{ 17} }{4} [/tex]
ㅤSehingga diperoleh:
ㅤ[tex] \sf \bull \: \: \alpha = \dfrac{ 1 + \sqrt{ 17} }{4} [/tex]
ㅤ[tex] \sf \bull \: \: \beta = \dfrac{ 1 - \sqrt{ 17} }{4} [/tex]
ㅤ
Dengan demikian:
[tex] \sf 2 \alpha \: + \: 2 \beta \: + \: ( \alpha \beta )^{2022} \:[/tex]
[tex] \sf \small = 2 \: ( \dfrac{ 1 + \sqrt{ 17} }{4} ) + 2 \: (\dfrac{ 1 - \sqrt{ 17} }{4})+ (\dfrac{ 1 + \sqrt{ 17} }{4} \: . \: \dfrac{ 1 - \sqrt{ 17} }{4})^{2022} \:[/tex]
[tex] \sf = \dfrac{ 1 + \sqrt{ 17} }{2} + \dfrac{ 1 - \sqrt{ 17} }{2}+ (\dfrac{ (1 + \sqrt{ 17} )(1 - \sqrt{17} )}{4 \times 4})^{2022} \:[/tex]
[tex] \sf = \dfrac{ 1 + \sqrt{ 17} }{2} + \dfrac{ 1 - \sqrt{ 17} }{2}+ (\dfrac{ 1 - 17}{16})^{2022} \:[/tex]
[tex] \sf = \dfrac{ 1 + \sqrt{ 17} }{2} + \dfrac{ 1 - \sqrt{ 17} }{2}+ (\dfrac{ - 16}{16})^{2022} \:[/tex]
[tex] \sf = \dfrac{ 1 + \sqrt{ 17} }{2} + \dfrac{ 1 - \sqrt{ 17} }{2}+ ( - 1)^{2022} \:[/tex]
[tex] \sf = \dfrac{ 1 + \sqrt{ 17} }{2} + \dfrac{ 1 - \sqrt{ 17} }{2}+ 1[/tex]
[tex] \sf = \dfrac{ 1 + \sqrt{ 17} + 1 - \sqrt{17} + 2 }{2} [/tex]
[tex] \sf = \dfrac{ 4 }{2} [/tex]
[tex] \sf =2[/tex]
Jadi, nilai dari 2α + 2β + (αβ)²⁰²² adalah 2 (D).