Odpowiedź:
[tex]\huge\boxed {~~a)~~y=(x-3)^{2}-11~~}[/tex]
[tex]\huge\boxed {~~b)~~y=\left(x-1\frac{1}{2} \right)^{2}-1\dfrac{1}{4} ~~}[/tex]
[tex]\huge\boxed {~~c)~~y=\left(x+\dfrac{1}{2} \right)^{2}~~}[/tex]
[tex]\huge\boxed {~~d)~~y=\frac{1}{2} (x-1)^{2}+\frac{1}{2} ~~}[/tex]
Szczegółowe wyjaśnienie:
[tex]\huge\boxed {~~f(x)=ax^{2} +bx+c,~~a\neq 0~,~x\in \mathbb {R}~~}[/tex]
[tex]\boxed {~f(x)=a(x-p)^{2}+q,~~gdzie: ~~p=-\frac{b}{2a} ,~~q=-\frac{\Delta}{4a} ,~~\Delta=b^{2}-4ac~~}[/tex]
[tex]a)\\\\y=x^{2} -6x-2\\\\a=1~,~b=-6~,~,c=-2\\\\\Delta =(-6)^{2}-4\cdot 1\cdot (-2)=36+8=44\\\\p=-\dfrac{(-6)}{2\cdot 1} =3\\\\q=-\dfrac{44}{4\cdot 1} =-11\\\\\\\huge\boxed {~~y=(x-3)^{2}-11~~}[/tex]
[tex]b)\\\\y=x^{2} -3x+1\\\\a=1~,~b=-3~,~,c=1\\\\\Delta =(-3)^{2}-4\cdot 1\cdot 1=9-4=5\\\\p=-\dfrac{(-3)}{2\cdot 1} =1\dfrac{1}{2} \\\\q=-\dfrac{5}{4\cdot 1} =-1\dfrac{1}{4} \\\\\\\huge\boxed {~~y=\left(x-1\frac{1}{2} \right)^{2}-1\dfrac{1}{4} ~~}[/tex]
[tex]c)\\\\y=x^{2} +x+\dfrac{1}{4} \\\\a=1~,~b=1~,~,c=\dfrac{1}{4} \\\\\Delta =1^{2}-4\cdot 1\cdot \dfrac{1}{4} =1-1=0\\\\p=-\dfrac{1}{2\cdot 1} =-\dfrac{1}{2} \\\\q=-\dfrac{0}{4\cdot 1} =0\\\\\\\huge\boxed {~~y=\left(x+\dfrac{1}{2} \right)^{2}~~}[/tex]
[tex]d)\\\\y=\dfrac{1}{2} x^{2} -x+1\\\\a=\dfrac{1}{2} ~,~b=-1~,~,c=1\\\\\Delta =(-1)^{2}-4\cdot 1\cdot \frac{1}{2} =1-2=-1\\\\p=-\dfrac{(-1)}{2\cdot \frac{1}{2} }=1\\\\q=-\dfrac{(-1)}{4\cdot \frac{1}{2} } =\dfrac{1}{2} \\\\\\\huge\boxed {~~y=\frac{1}{2} (x-1)^{2}+\frac{1}{2} ~~}[/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Verified answer
Odpowiedź:
[tex]\huge\boxed {~~a)~~y=(x-3)^{2}-11~~}[/tex]
[tex]\huge\boxed {~~b)~~y=\left(x-1\frac{1}{2} \right)^{2}-1\dfrac{1}{4} ~~}[/tex]
[tex]\huge\boxed {~~c)~~y=\left(x+\dfrac{1}{2} \right)^{2}~~}[/tex]
[tex]\huge\boxed {~~d)~~y=\frac{1}{2} (x-1)^{2}+\frac{1}{2} ~~}[/tex]
Szczegółowe wyjaśnienie:
FUNKCJA KWADRATOWA
[tex]\huge\boxed {~~f(x)=ax^{2} +bx+c,~~a\neq 0~,~x\in \mathbb {R}~~}[/tex]
[tex]\boxed {~f(x)=a(x-p)^{2}+q,~~gdzie: ~~p=-\frac{b}{2a} ,~~q=-\frac{\Delta}{4a} ,~~\Delta=b^{2}-4ac~~}[/tex]
Rozwiązujemy :
[tex]a)\\\\y=x^{2} -6x-2\\\\a=1~,~b=-6~,~,c=-2\\\\\Delta =(-6)^{2}-4\cdot 1\cdot (-2)=36+8=44\\\\p=-\dfrac{(-6)}{2\cdot 1} =3\\\\q=-\dfrac{44}{4\cdot 1} =-11\\\\\\\huge\boxed {~~y=(x-3)^{2}-11~~}[/tex]
[tex]b)\\\\y=x^{2} -3x+1\\\\a=1~,~b=-3~,~,c=1\\\\\Delta =(-3)^{2}-4\cdot 1\cdot 1=9-4=5\\\\p=-\dfrac{(-3)}{2\cdot 1} =1\dfrac{1}{2} \\\\q=-\dfrac{5}{4\cdot 1} =-1\dfrac{1}{4} \\\\\\\huge\boxed {~~y=\left(x-1\frac{1}{2} \right)^{2}-1\dfrac{1}{4} ~~}[/tex]
[tex]c)\\\\y=x^{2} +x+\dfrac{1}{4} \\\\a=1~,~b=1~,~,c=\dfrac{1}{4} \\\\\Delta =1^{2}-4\cdot 1\cdot \dfrac{1}{4} =1-1=0\\\\p=-\dfrac{1}{2\cdot 1} =-\dfrac{1}{2} \\\\q=-\dfrac{0}{4\cdot 1} =0\\\\\\\huge\boxed {~~y=\left(x+\dfrac{1}{2} \right)^{2}~~}[/tex]
[tex]d)\\\\y=\dfrac{1}{2} x^{2} -x+1\\\\a=\dfrac{1}{2} ~,~b=-1~,~,c=1\\\\\Delta =(-1)^{2}-4\cdot 1\cdot \frac{1}{2} =1-2=-1\\\\p=-\dfrac{(-1)}{2\cdot \frac{1}{2} }=1\\\\q=-\dfrac{(-1)}{4\cdot \frac{1}{2} } =\dfrac{1}{2} \\\\\\\huge\boxed {~~y=\frac{1}{2} (x-1)^{2}+\frac{1}{2} ~~}[/tex]