Materi : Integral
3x² + 2x - 4
= ( 3/3 )x³ + ( 2/2 )x² - ( 4/1 )x + C
= (1)x³ + (1)x² - (4)x + C
= x³ + x² - 4x + C { c. ? }
Semoga bisa membantu
[tex] \boxed{ \colorbox{darkblue}{ \sf{ \color{lightblue}{ answered\:by\: BLUEBRAXGEOMETRY}}}} [/tex]
Jawab:
C. x³ + x² - 4x + C
Penjelasan dengan langkah-langkah:
Rumus Integral parsial:
[tex]\boxed{\frac{a}{n+1}x^{n+1} + \:C}[/tex]
a = koefisien x
n = pangkat
[tex]\displaystyle\int 3x^{2} + 2x - 4 \: \:dx[/tex]
[tex]3x^{2} = \frac{3}{2+1}x^{2+1} = \frac{3}{3}x^{3} = x^{3}[/tex]
[tex]2x = 2x^{1} = \frac{2}{1+1}x^{1+1} = \frac{2}{2}x^{2} = x^{2}[/tex]
[tex]4 = 4x^{0} = \frac{4}{0+1}x^{0+1} = \frac{4}{1}x^{1} = 4x[/tex]
Maka:
= x³ + x² - 4x + C
Jadi, hasil dari [tex]\int 3x^{2} + 2x - 4 \: \:dx[/tex] adalah x³ + x² - 4x + C (C)
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Materi : Integral
3x² + 2x - 4
= ( 3/3 )x³ + ( 2/2 )x² - ( 4/1 )x + C
= (1)x³ + (1)x² - (4)x + C
= x³ + x² - 4x + C { c. ? }
Semoga bisa membantu
[tex] \boxed{ \colorbox{darkblue}{ \sf{ \color{lightblue}{ answered\:by\: BLUEBRAXGEOMETRY}}}} [/tex]
Verified answer
Jawab:
C. x³ + x² - 4x + C
Penjelasan dengan langkah-langkah:
Rumus Integral parsial:
[tex]\boxed{\frac{a}{n+1}x^{n+1} + \:C}[/tex]
a = koefisien x
n = pangkat
[tex]\displaystyle\int 3x^{2} + 2x - 4 \: \:dx[/tex]
[tex]3x^{2} = \frac{3}{2+1}x^{2+1} = \frac{3}{3}x^{3} = x^{3}[/tex]
[tex]2x = 2x^{1} = \frac{2}{1+1}x^{1+1} = \frac{2}{2}x^{2} = x^{2}[/tex]
[tex]4 = 4x^{0} = \frac{4}{0+1}x^{0+1} = \frac{4}{1}x^{1} = 4x[/tex]
Maka:
[tex]\displaystyle\int 3x^{2} + 2x - 4 \: \:dx[/tex]
= x³ + x² - 4x + C
Jadi, hasil dari [tex]\int 3x^{2} + 2x - 4 \: \:dx[/tex] adalah x³ + x² - 4x + C (C)