Respuesta:
[tex]8640x^{4}[/tex]
Explicación paso a paso:
[tex](4x-\frac{3}{2} )^{6}[/tex]
[tex]n = 6[/tex]
[tex]a = 4x[/tex]
[tex]b = -\frac{3}{2}[/tex]
[tex]k = 3[/tex]
Fórmula:
[tex]T_{k} = (\left \ {{n} \atop {k-1}} ) a^{n-k+1} b^{k-1}[/tex]
[tex]T_{3} =(\left \ {{6} \atop {3-1}} ) (4x)^{6-3+1} (-\frac{3}{2}) ^{3-1}[/tex]
[tex]T_{3} = (\left \ {{6} \atop {2}} ) (4x)^{4} (-\frac{3}{2} )^{2}[/tex]
[tex]T_{3} = \frac{6!}{2!(6-2)!} (256x^{4} )(\frac{9}{4} ) = \frac{6!}{2!*4!} (\frac{2304x^{4} }{4} ) =\frac{6*5*4!}{2*1*4!} ( 576x^{4} ) = \frac{30}{2} * ( 576x^{4} )[/tex]
[tex]T_{3} = 8640x^{4}[/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Respuesta:
[tex]8640x^{4}[/tex]
Explicación paso a paso:
[tex](4x-\frac{3}{2} )^{6}[/tex]
[tex]n = 6[/tex]
[tex]a = 4x[/tex]
[tex]b = -\frac{3}{2}[/tex]
[tex]k = 3[/tex]
Fórmula:
[tex]T_{k} = (\left \ {{n} \atop {k-1}} ) a^{n-k+1} b^{k-1}[/tex]
[tex]T_{3} =(\left \ {{6} \atop {3-1}} ) (4x)^{6-3+1} (-\frac{3}{2}) ^{3-1}[/tex]
[tex]T_{3} = (\left \ {{6} \atop {2}} ) (4x)^{4} (-\frac{3}{2} )^{2}[/tex]
[tex]T_{3} = \frac{6!}{2!(6-2)!} (256x^{4} )(\frac{9}{4} ) = \frac{6!}{2!*4!} (\frac{2304x^{4} }{4} ) =\frac{6*5*4!}{2*1*4!} ( 576x^{4} ) = \frac{30}{2} * ( 576x^{4} )[/tex]
[tex]T_{3} = 8640x^{4}[/tex]