Odpowiedź:
[tex]\frac{1}{x} + 1 = \frac{4}{x + 1}[/tex] x ≠ 0 i x ≠ - 1
[tex]\frac{1}{x} + \frac{x}{x} = \frac{4}{x + 1}[/tex]
[tex]\frac{x + 1}{x} = \frac{4}{x + 1}[/tex] mnożymy na krzyż
( x + 1)² = 4 x
x² +2 x + 1 = 4 x
x² -2 x + 1 = 0
( x - 1)² = 0
x - 1 = 0
x = 1
=========================================
[tex]\frac{1}{x} - 2 = 3 x[/tex] / * x x ≠ 0
1 - 2 x = 3 x²
3 x² +2 x - 1 = 0
-------------------------
a = 3 b = 2 c = - 1
Δ = b² - 4 a*x = 2² - 4*3*( - 1) = 4 + 12 = 16
√Δ = 4
x = [tex]\frac{- 2 - 4}{2*3} = - 1[/tex] lub x = [tex]\frac{-2 + 4}{2*3} = \frac{1}{3}[/tex]
Szczegółowe wyjaśnienie:
[tex]x = \frac{- b - \sqrt{delty} }{2*a}[/tex] lub [tex]x = \frac{- b + \sqrt{delty} }{2*a}[/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Odpowiedź:
[tex]\frac{1}{x} + 1 = \frac{4}{x + 1}[/tex] x ≠ 0 i x ≠ - 1
[tex]\frac{1}{x} + \frac{x}{x} = \frac{4}{x + 1}[/tex]
[tex]\frac{x + 1}{x} = \frac{4}{x + 1}[/tex] mnożymy na krzyż
( x + 1)² = 4 x
x² +2 x + 1 = 4 x
x² -2 x + 1 = 0
( x - 1)² = 0
x - 1 = 0
x = 1
=========================================
[tex]\frac{1}{x} - 2 = 3 x[/tex] / * x x ≠ 0
1 - 2 x = 3 x²
3 x² +2 x - 1 = 0
-------------------------
a = 3 b = 2 c = - 1
Δ = b² - 4 a*x = 2² - 4*3*( - 1) = 4 + 12 = 16
√Δ = 4
x = [tex]\frac{- 2 - 4}{2*3} = - 1[/tex] lub x = [tex]\frac{-2 + 4}{2*3} = \frac{1}{3}[/tex]
=========================================
Szczegółowe wyjaśnienie:
[tex]x = \frac{- b - \sqrt{delty} }{2*a}[/tex] lub [tex]x = \frac{- b + \sqrt{delty} }{2*a}[/tex]