Jawab: [1.] Hp = {45°, 135°, 225°, 315°} [2.] Hp = {30°, 150°} [3.] Hp = {95°, 275°} [4.] Hp = {45°, 105°}
Penjelasan dengan langkah²: [1.] 6 sin² x = 3 {0° ≤ x ≤ 360°} sin² x = ³/₆ sin² x = ½ |sin x| = √(½) |sin x| = ½√2 sin x = ±½√2 -------------------------------------------- Nilai sin⁻¹ positif dan negatif Hp ada di semua 4 kuadran. x = {sin⁻¹ (sin x), 180°-sin⁻¹ (sin x), 180°+sin⁻¹ (sin x), 360°-sin⁻¹ (sin x)} -------------------------------------------- Periodisitas sin x = 360°, maka ada 4 penyelesaian. sin x = ±½√2 sin⁻¹ ½√2 = 45°, maka x = {sin⁻¹ ½√2, 180°-sin⁻¹ ½√2, 180°+sin⁻¹ ½√2, 360°-sin⁻¹ ½√2} x = {45°, 180°-45°, 180°+45°, 360°-45°} x = {45°, 135°, 225°, 315°} Hp = {45°, 135°, 225°, 315°}
[2.] 4 sin x = 2 {0° ≤ x ≤ 360°} sin x = ²/₄ sin x = ½ Nilai sin⁻¹ positif, di kuad i dan ii x = {sin⁻¹ (sin x), 180° - sin⁻¹ (sin x)} ---------------------------------------------- Periodisitas sin x = 360°, maka ada 2 penyelesaian. sin⁻¹ ½ = 30°, maka x = {sin⁻¹ ½, 180° - sin⁻¹ ½} x = {30°, 180° - 30°} x = {30°, 150°} Hp = {30°, 150°}
[3.] sin(40°+x) + cos(40°+x) = 0 {0° ≤ x ≤ 360°}
tan(40°+x) + 1 = 0 tan(40°+x) = -1 40°+x = tan⁻¹(-1) Nilai tan⁻¹ negatif di kuad ii dan iv 40°+x = 180° - tan⁻¹(1) = 360° - tan⁻¹(1) tan⁻¹(1) = 45°, maka 40°+x = 180° - 45° = 360° - 45° 40°+x = 135° = 315° x = {135° - 40°, 315° - 40°} x = {95°, 275°} Hp = {95°, 275°}
[4.] cos(x-75°) = ½√3 {0° ≤ x ≤ 360°} x-75° = cos⁻¹(½√3) nilai cos⁻¹ positif di kuad i dan iv cos⁻¹(½√3) = 30°, maka x-75° = cos⁻¹(½√3) = 0° - cos⁻¹(½√3) x-75° = 30° = 0° - 30° x-75° = 30° = -30° x = {30°+75°, -30°+75} x = {105°, 45°} Hp = {45°, 105°}
Jawab:
[1.] Hp = {45°, 135°, 225°, 315°}
[2.] Hp = {30°, 150°}
[3.] Hp = {95°, 275°}
[4.] Hp = {45°, 105°}
Penjelasan dengan langkah²:
[1.] 6 sin² x = 3 {0° ≤ x ≤ 360°}
sin² x = ³/₆ sin² x = ½
|sin x| = √(½) |sin x| = ½√2
sin x = ±½√2
--------------------------------------------
Nilai sin⁻¹ positif dan negatif
Hp ada di semua 4 kuadran.
x = {sin⁻¹ (sin x), 180°-sin⁻¹ (sin x),
180°+sin⁻¹ (sin x), 360°-sin⁻¹ (sin x)}
--------------------------------------------
Periodisitas sin x = 360°, maka
ada 4 penyelesaian.
sin x = ±½√2
sin⁻¹ ½√2 = 45°, maka
x = {sin⁻¹ ½√2, 180°-sin⁻¹ ½√2,
180°+sin⁻¹ ½√2, 360°-sin⁻¹ ½√2}
x = {45°, 180°-45°, 180°+45°, 360°-45°}
x = {45°, 135°, 225°, 315°}
Hp = {45°, 135°, 225°, 315°}
[2.] 4 sin x = 2 {0° ≤ x ≤ 360°}
sin x = ²/₄ sin x = ½
Nilai sin⁻¹ positif, di kuad i dan ii
x = {sin⁻¹ (sin x), 180° - sin⁻¹ (sin x)}
----------------------------------------------
Periodisitas sin x = 360°, maka
ada 2 penyelesaian.
sin⁻¹ ½ = 30°, maka
x = {sin⁻¹ ½, 180° - sin⁻¹ ½}
x = {30°, 180° - 30°}
x = {30°, 150°}
Hp = {30°, 150°}
[3.] sin(40°+x) + cos(40°+x) = 0
{0° ≤ x ≤ 360°}
tan(40°+x) + 1 = 0
tan(40°+x) = -1
40°+x = tan⁻¹(-1)
Nilai tan⁻¹ negatif di kuad ii dan iv
40°+x = 180° - tan⁻¹(1) = 360° - tan⁻¹(1)
tan⁻¹(1) = 45°, maka
40°+x = 180° - 45° = 360° - 45°
40°+x = 135° = 315°
x = {135° - 40°, 315° - 40°}
x = {95°, 275°}
Hp = {95°, 275°}
[4.] cos(x-75°) = ½√3 {0° ≤ x ≤ 360°}
x-75° = cos⁻¹(½√3)
nilai cos⁻¹ positif di kuad i dan iv
cos⁻¹(½√3) = 30°, maka
x-75° = cos⁻¹(½√3) = 0° - cos⁻¹(½√3)
x-75° = 30° = 0° - 30°
x-75° = 30° = -30°
x = {30°+75°, -30°+75}
x = {105°, 45°}
Hp = {45°, 105°}
(xcvi)