∠a + ∠b + ∠c + ∠d + ∠e + ∠f + ∠g + ∠h = 360°
The sum of angles in triangles is 180°. Hence, based on the given picture, we get:
Then, we calculate the sum of (i), (ii), (iii), and (iv).
∠a + ∠b = 180° – ∠ECJ∠c + ∠d = 180° – ∠CEG∠e + ∠f = 180° – ∠EGJ∠g + ∠h = 180° – ∠CJG---------------------------------- +∠a + ∠b + ∠c + ∠d + ∠e + ∠f + ∠g + ∠h= 720° – ∠ECJ – ∠CEG – ∠EGJ –∠CJG⇒ ∠a + ∠b + ∠c + ∠d + ∠e + ∠f + ∠g + ∠h = 720° – (∠ECJ + ∠CEG + ∠EGJ + ∠CJG)
We know that ∠ECJ, ∠CEG, ∠EGJ, and ∠CJG are angles inside CEGJ. Hence:∠ECJ + ∠CEG + ∠EGJ + ∠CJG = 360°
So:∠a + ∠b + ∠c + ∠d + ∠e + ∠f + ∠g + ∠h = 720° – 360°∴ ∠a + ∠b + ∠c + ∠d + ∠e + ∠f + ∠g + ∠h = 360° (answer)
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
∠a + ∠b + ∠c + ∠d + ∠e + ∠f + ∠g + ∠h = 360°
Explanation
The sum of angles in triangles is 180°. Hence, based on the given picture, we get:
∠BCA and ∠ECJ are vertical/opposite angles, so ∠BCA = ∠ECJ. Therefore:
⇒ ∠a + ∠b = 180° – ∠ECJ ...(i)
∠DEF and ∠CEG are vertical/opposite angles, so ∠DEF = ∠CEG. Therefore:
⇒ ∠c + ∠d = 180° – ∠CEG ....(ii)
∠IGH and ∠EGJ are vertical/opposite angles, so ∠IGH = ∠EGJ. Therefore:
⇒ ∠e + ∠f = 180° – ∠EGJ ....(iii)
∠KJL and ∠CJG are vertical/opposite angles, so ∠KJL = ∠CJG. Therefore:
⇒ ∠g + ∠h = 180° – ∠CJG ...(iv)
Then, we calculate the sum of (i), (ii), (iii), and (iv).
∠a + ∠b = 180° – ∠ECJ
∠c + ∠d = 180° – ∠CEG
∠e + ∠f = 180° – ∠EGJ
∠g + ∠h = 180° – ∠CJG
---------------------------------- +
∠a + ∠b + ∠c + ∠d + ∠e + ∠f + ∠g + ∠h
= 720° – ∠ECJ – ∠CEG – ∠EGJ –∠CJG
⇒ ∠a + ∠b + ∠c + ∠d + ∠e + ∠f + ∠g + ∠h
= 720° – (∠ECJ + ∠CEG + ∠EGJ + ∠CJG)
We know that ∠ECJ, ∠CEG, ∠EGJ, and ∠CJG are angles inside CEGJ. Hence:
∠ECJ + ∠CEG + ∠EGJ + ∠CJG = 360°
So:
∠a + ∠b + ∠c + ∠d + ∠e + ∠f + ∠g + ∠h = 720° – 360°
∴ ∠a + ∠b + ∠c + ∠d + ∠e + ∠f + ∠g + ∠h = 360° (answer)