Odpowiedź:
Szczegółowe wyjaśnienie:
[tex]f(x)=log_{x-1}(\frac{x-3}{2-x} )[/tex]
D:
[tex]\frac{x-3}{2-x} > 0\\(x-3)(2-x) > 0[/tex] 2-x ≠0 x-1>0 x-1≠1
x₁=3 x₂=2 x≠2 x>1 x≠2
x∈(2, 3)
____
----------/---------\-----------
-----/---------/-------------\------>
1 2 3
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Odpowiedź:
Szczegółowe wyjaśnienie:
[tex]f(x)=log_{x-1}(\frac{x-3}{2-x} )[/tex]
D:
[tex]\frac{x-3}{2-x} > 0\\(x-3)(2-x) > 0[/tex] 2-x ≠0 x-1>0 x-1≠1
x₁=3 x₂=2 x≠2 x>1 x≠2
x∈(2, 3)
____
----------/---------\-----------
-----/---------/-------------\------>
1 2 3
x∈(2, 3)