Odpowiedź:
Szczegółowe wyjaśnienie:
2.
[tex]w(x)=6x^3+x^2-12x-2=x^2(6x+1)-2(6x+1)=(x^2-2)(6x+1)=[/tex]
[tex]=(x-\sqrt{2} )(x+\sqrt{2} )(6x+1)[/tex]
pierw. [tex]x_1=\sqrt{2}[/tex] v [tex]x_2=-\sqrt{2}[/tex] v [tex]x_3=-\frac{1}{6}[/tex].
4.
[tex]x^3-6x^2-5x-14=0[/tex]
D=R
[tex]x^3-7x^2+x^2-7x+2x-14=0\\x^2(x-7)+x(x-7)+2(x-7)=0\\(x^2+x+2)(x-7)=0[/tex]
Δ<0 x₁=7
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Odpowiedź:
Szczegółowe wyjaśnienie:
2.
[tex]w(x)=6x^3+x^2-12x-2=x^2(6x+1)-2(6x+1)=(x^2-2)(6x+1)=[/tex]
[tex]=(x-\sqrt{2} )(x+\sqrt{2} )(6x+1)[/tex]
pierw. [tex]x_1=\sqrt{2}[/tex] v [tex]x_2=-\sqrt{2}[/tex] v [tex]x_3=-\frac{1}{6}[/tex].
4.
[tex]x^3-6x^2-5x-14=0[/tex]
D=R
[tex]x^3-7x^2+x^2-7x+2x-14=0\\x^2(x-7)+x(x-7)+2(x-7)=0\\(x^2+x+2)(x-7)=0[/tex]
Δ<0 x₁=7